Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …

Methanol to Gasoline Conversion over CuO/ZSM-5 Catalyst Synthesized Using Sonochemistry Method

Ehsan Kianfar / Mahmoud Salimi / Saeed Hajimirzaee
  • Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Behnam Koohestani
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/ijcre-2018-0127


In this research, the catalytic conversion of methanol to gasoline range hydrocarbons has been studied over CuO (5 %)/ZSM-5 and CuO (7 %)/ZSM-5 catalysts prepared via sonochemistry methods. Conversion of methanol to gasoline (MTG) has been carried out in a fixed bed reactor under atmospheric pressure and 400˚C temperature, over copper oxide on the synthesized ZSM-5 catalyst. The samples were characterized by XRD, SEM, TEM, BET, and FTIR techniques; in which good crystallinity and high specific surface area of synthesized zeolite were proved after impregnation of zeolite with copper. The present investigation suggests that the CuO/ZSM-5 catalyst made by sonochemistry method can increase the yield toward hydrocarbon production. It was concluded that impregnation of zeolite with copper oxide can alter the Brønsted/Lewis acid sites ratio and provide new Lewis acid sites over the surface of the ZSM-5. The main products of methanol to gasoline reaction over the catalyst that prepared via sonochemistry method were toluene, xylene, ethylbenzene, ethyl toluene, tetra methylbenzene, diethyl benzene and butylbenzene. The total amount of aromatics in the products was 80 % by using this catalyst. Our results suggest that catalyst synthesized by using sonochemistry shows better production yield toward hydrocarbons by affecting the distribution of active sites on the surface of the ZSM-5.

Keywords: ZSM-5; copper oxide; methanol to gasoline; MTG; sonification


  • Biscardi, J. A., G. D. Meitzner, and E. Iglesia. 1998. “Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts.” Journal of Catalysis 179 (1): 192–202.CrossrefGoogle Scholar

  • Bjorgen, M., F. Joensen, M. S. Holm, U. Olsbye, K. P. Lillerud, and S. Svelle. 2008. “Methanol to Gasoline over Zeolite H-ZSM-5: Improved Catalyst Performance by Treatment with NaOH.” Applications Catalysis A-General 345 (1): 43–50.CrossrefGoogle Scholar

  • Bjørgen, M., F. Joensen, K.-P. Lillerud, U. Olsbye, and S. Svelle. 2009. “The Mechanisms of Ethene and Propene Formation from Methanol over High Silica H-ZSM-5 and H-Beta.” Catalysis Today 142: 90–97.Web of ScienceCrossrefGoogle Scholar

  • Bjørgen, M., S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, and U. Olsbye. 2007. “Conversion of Methanol to Hydrocarbons over Zeolite H-ZSM-5: On the Origin of the Olefinic Species.” Journal Catalysis 249: 195–207.Web of ScienceCrossrefGoogle Scholar

  • Cañizares, P., A. de Lucas, F. Dorado, A. Durán, and I. Asencio. 1998. “Characterization of Ni and Pd Supported on H-Mordenite Catalysts: Influence of the Metal Loading Method.” Applied Catalysis A: General 169 (1): 137–50.CrossrefGoogle Scholar

  • Conte M, Lopez-Sanchez J. A., He Q, Morgan D. J., Ryabenkova Y, Bartley J. K., Carley A. F., et al. 2012. “Modified Zeolite ZSM-5 for the Methanol to Aromatics Reaction.” Catalysis Sciences Technological 2 (1): 105–112.Google Scholar

  • Cruz-Cabeza, A. J., D. Esquivel, C. Jiménez-Sanchidrián, and F. J. Romero-Salguero. 2012. “Metal-Exchanged β Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons.” Materials 5 (1): 121–134.Web of ScienceCrossrefGoogle Scholar

  • Dagle, R. A., J. A. Lizarazo-Adarme, V. Lebarbier Dagle, M. J. Gray, J. F. White, D. L. King, and D. R. Palo. 2014. “Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System.” Fuel Processing Technological 123: 65–74.CrossrefGoogle Scholar

  • Di, Zuoxing, Cheng Yang, Xuejing Jiao, Jianqing Li, Jinhu Wu, and Dongke Zhang. 2013. “A ZSM-5/MCM-48 Based Catalyst for Methanol to Gasoline Conversion.” Fuel 104: 878–81.Web of ScienceCrossrefGoogle Scholar

  • GarcÃa-MartÃnez, J., K. Li, and M. E. Davis. 2015. “Mesoporous Zeolites: Preparation, Characterization and Applications,” 1–608. Germany: Wiley 3527335749, 9783527335749Google Scholar

  • Hajimirzaee, S., M. Ainte, B. Soltani, R. M. Behbahani, G. A. Leeke, and J. Wood. 2015. “Dehydration of Methanol to Light Olefins upon Zeolite/Alumina Catalysts: Effect of Reaction Conditions, Catalyst Support and Zeolite Modification.” Chemical Engineering Research and Design 93 (SupplementC): 541–53.Web of ScienceCrossrefGoogle Scholar

  • Isernia, L. F. 2013. “FTIR Study of the Relation, between Extra-Framework Aluminum Species and the Adsorbed Molecular Water, and Its Effect on the Acidity in ZSM-5 Steamed Zeolite.” Materials Research 16: 792–802.Web of ScienceCrossrefGoogle Scholar

  • Kianfar, E., M. Salimi, V. Pirouzfar, and B. Koohestani. 2018a. “Synthesis of Modified Catalyst and Stabilization of CuO/NH4-ZSM-5 for Conversion of Methanol to Gasoline.” International Journal Applications Ceramics Technological 15 (3): 734–41.Google Scholar

  • Kianfar, E., M. Salimi, V. Pirouzfar, and B. Koohestani. 2018b. “Synthesis and Modification of Zeolite ZSM-5 Catalyst with Solutions of Calcium Carbonate (Caco3) and Sodium Carbonate (Na2co3) for Methanol to Gasoline Conversion.” International Journal of Chemical Reactor Engineering 16 (7): 1–7.Web of ScienceGoogle Scholar

  • Koekkoek, A. J. J., W. Kim, V. Degirmenci, H. Xin, R. Ryoo, and E. J. M. Hensen. 2013. “Catalytic Performance of Sheet-Like Fe/ZSM-5 Zeolites for the Selective Oxidation of Benzene with Nitrous Oxide.” Journal of Catalysis 299: 81–89.CrossrefWeb of ScienceGoogle Scholar

  • Lee, J. H., M. B. Park, J. K. Lee, H. -K. Min, M. K. Song, and S. B. Hong. 2010. “Synthesis and Characterization of ERI-type UZM-12 Zeolites and Their Methanol-To-Olefin Performance.” Journal of the American Chemical Society 132: 12971–82.CrossrefWeb of ScienceGoogle Scholar

  • Narula, C. K., C. S. Daw, J. W. Hoard, and T Hammer. 2005. “Materials Issues Related to Catalysts for Treatment of Diesel Exhaust.” International Journal of Applied Ceramic Technology 2 (6): 452–66.CrossrefGoogle Scholar

  • Ni Youming, Sun Aiming, Wu Xiaoling, Hu Jianglin, Li Tao, Li Guangxing, et al. 2011. “The Preparation of Nano-Sized H[Zn, Al]ZSM-5 Zeolite and Its Application in the Aromatization of Methanol.” Microporous and Mesoporous Materials 143 (2): 435–442.CrossrefWeb of ScienceGoogle Scholar

  • Rownaghi, A. A., and J. Hedlund. 2011. “Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5.” Industrial & Engineering Chemistry Research 50 (21): 11872–78.Web of ScienceCrossrefGoogle Scholar

  • Shareh, F. B., M. Kazemeini, M. Asadi, and M. Fattahi. 2014. “Metal Promoted Mordenite Catalyst for Methanol Conversion into Light Olefins.” Petroleum Sciences Technological 32: 1349–56.Google Scholar

  • Shukla, D. B., and V. P. Pandya. 1989. “Estimation of Crystalline Phase in ZSM-5 Zeolites by Infrared Spectroscopy.” Journal of Chemical Technology & Biotechnology 44 (2): 147–54.Google Scholar

  • Treacy, M. M., and J. B. Higgins. 2007. Collection of Simulated XRD Powder Patterns for Zeolites Fifth,,, (5th) revised 0–485. New York : Elsevier 978-0-444-53067-7. DOI: CrossrefWeb of ScienceGoogle Scholar

  • van Donk, S., A. H. Janssen, J. H. Bitter, and K. P. de Jong. 2003. “Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts.” Catalysis Reviews 45 (2): 297–319.CrossrefGoogle Scholar

  • Van Noyen, J., A. De Wilde, M. Schroeven, S. Mullens, and J. Luyten. 2012. “Ceramic Processing Techniques for Catalyst Design: Formation, Properties, and Catalytic Example of ZSM-5 on 3-Dimensional Fiber Deposition Support Structures.” International Journal of Applied Ceramic Technology 9 (5): 902–10.CrossrefWeb of ScienceGoogle Scholar

  • Wan, Zhijian, Wei Wu, Wan Chen, Hong Yang, and Dongke Zhang. 2014. “Direct Synthesis of Hierarchical ZSM-5 Zeolite and Its Performance in Catalyzing Methanol to Gasoline Conversion.” Industrial Engineering Chemical Researcher 53 (50): 19471–78.CrossrefGoogle Scholar

  • Wu, L., V. Degirmenci, P. C. M. M. Magusin, N. J. H. G. M. Lousberg, and E. J. M. Hensen. 2013. “Mesoporous SSZ-13 Zeolite Prepared by a Dual-Template Method with Improved Performance in the Methanol-To-Olefins Reaction.” Journal Catalysis 298: 27–40.Web of ScienceCrossrefGoogle Scholar

  • Wu, W., and E. Weitz. 2014. “Modification of Acid Sites in ZSM-5 by Ion-Exchange: An In-Situ FTIR Study.” Applied Surface Science 316: 405–15.CrossrefWeb of ScienceGoogle Scholar

  • Yaripour, F., M. Mollavali, S. M. Jam, and H. Atashi. 2009. “Catalytic Dehydration of Methanol to Dimethyl Ether Catalyzed by Aluminum Phosphate Catalysts.” Energy & Fuels 23 (4): 1896–900.CrossrefWeb of ScienceGoogle Scholar

  • Yilmaz, B., and U. Müller. 2009. “Catalytic Applications of Zeolites in Chemical Industry.” Topics in Catalysis 52 (6): 888–95.CrossrefWeb of ScienceGoogle Scholar

  • Zaidi, H. A., and K. K. Pant. 2005a. “Transformation of Methanol to Gasoline Range Hydrocarbons Using HZSM-5 Catalysts Impregnated with Copper Oxide.” Korean Journal of Chemical Engineering 22 (3): 353–57.CrossrefGoogle Scholar

  • Zaidi, H. A., and K. K. Pant. 2005b. “Catalytic Activity of Copper Oxide Impregnated HZSM-5 in Methanol Conversion to Liquid Hydrocarbons.” The Canadian Journal of Chemical Engineering 83 (6): 970–77.Google Scholar

About the article

Received: 2018-05-23

Accepted: 2018-09-15

Revised: 2018-08-29

Published Online: 2018-09-25

Conflict of Interest: Compliance with ethical standardsFunding There is no funding to report for this submission.Conflict of interest the authors declare that they have no conflict of interest

Citation Information: International Journal of Chemical Reactor Engineering, 20180127, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0127.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in