Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Ahead of print


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Synthesis and Optimization of Methyl Laurate Using Sulfonated Pyrrolidonium Ionic Liquid as a Catalyst

Benyong HanORCID iD: http://orcid.org/0000-0002-9887-6080 / Fang Yin / Shiqing Liu / Xingling Zhao / Jing Liu / Changmei Wang / Hong Yang / Wudi Zhang
Published Online: 2018-11-23 | DOI: https://doi.org/10.1515/ijcre-2018-0144


Methyl laurate was synthesized from lauric acid and methanol using Brønsted acid ionic liquids as catalysts, by an esterification reaction. The efficiencies of four different catalysts, 1-methylimidazolium hydrogen sulfate ([Hmim]HSO4), 2-pyrrolidonium hydrogen sulfate ([Hnhp]HSO4), 1-(3-sulfonic acid) propyl-2-pyrrolidonium hydrogen sulfate ([C3SO3Hnhp]HSO4) and H2SO4 were compared. The effect of the methanol/lauric acid molar ratio, reaction temperature, reaction time, and catalyst dosage on the lauric acid conversion was investigated by single-factor experiments. On the basis of single-factor experiments, the esterification of lauric acid and methanol was optimized using response surface methodology (RSM) based on central composite design (CCD). The results showed that the most effective catalyst was the ionic liquid [C3SO3Hnhp]HSO4. The optimal conditions were as follows: [C3SO3Hnhp]HSO4 dosage of 10 % (based on the mass of lauric acid), methanol/lauric acid molar ratio of 9:1, reaction time of 1 h and reaction temperature of 70 °C. Under these conditions, the lauric acid conversion reached 95.33 %. The catalytic activity of [C3SO3Hnhp]HSO4 still remained high after 5 cycles.

Keywords: ionic liquid [C3SO3Hnhp]HSO4; response surface methodology; methyl laurate; esterification; optimization


  • Aghabarari, B., M. Ghiaci, S. G. Amini, E. Rahimi, and M. V. Martinez-Huerta. 2014. “Esterification of Fatty Acids by New Ionic Liquids as Acid Catalysts.” Journal of the Taiwan Institute of Chemical Engineers 45 (2): 431–35.Google Scholar

  • Alegría, A., and J. Cuellar. 2015. “Esterification of Oleic Acid for Biodiesel Production Catalyzed by 4-Dodecylbenzenesulfonic Acid.” Applied Catalysis B-Environmental 179: 530–41.Google Scholar

  • American Oil Chemists' Society. 2005. Official methods and recommended practices of the American Oil Chemists' Society,Urbana.Google Scholar

  • Boey, P. L., G. P. Maniam, and S. A. Hamid. 2011. “Performance of Calcium Oxide as a Heterogeneous Catalyst in Biodiesel Production: A Review.” Chemical Engineering Jouranl 168 (1): 15–22.Google Scholar

  • Cao, Z. J., X. Zhao, F. Q. He, Y. Zhou, K. Huang, A. M. Zheng, and D. J. Tao. 2018. “Highly Efficient Indirect Hydration of Olefins to Alcohols Using Superacidic Polyoxometalate-Based Ionic Hybrids Catalysts.” Industrial & Engineering Chemistry Research 57 (19): 6654–63.Google Scholar

  • Carmo, A. C., L. K. de Souza, C. E. Da Costa, E. Longo, J. R. Zamian, and G. N. Da Rocha Filho. 2009. “Production of Biodiesel by Esterification of Palmitic Acid over Mesoporous Aluminosilicate Al-MCM-41.” Fuel 88 (3): 461–68.Google Scholar

  • Che, R., L. Huang, and X. Yu. 2015. “Enhanced Biomass Production, Lipid Yield and Sedimentation Efficiency by Iron Ion.” Bioresource Technology 192: 795–98.Google Scholar

  • Chowdhury, S., R. S. Mohan, and J. L Scott. 2007. “Reactivity of Ionic Liquids.” Tetrahedron 63 (11): 2363–89.Google Scholar

  • Costa, A. A., P. R. Braga, J. L. de Macedo, J. A. Dias, and S. C. Dias. 2012. “Structural Effects of WO3 Incorporation on USY Zeolite and Application to Free Fatty Acids Esterification.” Microporous and Mesoporous Materials 147 (1): 142–48.Google Scholar

  • Fan, P., S. Xing, J. Wang, J. Fu, L. Yang, G. Yang, and P. Lv. 2017. “Sulfonated Imidazolium Ionic Liquid-Catalyzed Transesterification for Biodiesel Synthesis.” Fuel 188: 483–88.Google Scholar

  • Fan, X., F. Chen, and X. Wang. 2010. “Ultrasound-Assisted Synthesis of Biodiesel from Crude Cottonseed Oil Using Response Surface Methodology.” Journal of Oleo Science 59 (5): 235–41.Google Scholar

  • Fang, D., J. Yang, and C. Jiao. 2011. “Dicationic Ionic Liquids as Environmentally Benign Catalysts for Biodiesel Synthesis.” Acs Catalysis 1 (1): 42–47.Google Scholar

  • Fauzi, A. H. M., and N. A. S. Amin. 2013. “Optimization of Oleic Acid Esterification Catalyzed by Ionic Liquid for Green Biodiesel Synthesis.” Energy Conversion and Management 76: 818–27.Google Scholar

  • Fauzi, A. H. M., N. A. S. Amin, and R. Mat. 2014. “Esterification of Oleic Acid to Biodiesel Using Magnetic Ionic Liquid: Multi-Objective Optimization and Kinetic Study.” Apply Energy 114: 809–18.Google Scholar

  • Han, B., W. Zhang, Y. Chen, F. Yin, S. Liu, X. Zhao, and H. Yang. 2014. “Synthesis of Methyl Laurate Catalyzed by Brønsted Acid Ionic Liquids.” Journal of Chemical and Pharmaceutical Research 6: 435–40.Google Scholar

  • Han, M., W. Yi, Q. Wu, Y. Liu, Y. Hong, and D. Wang. 2009. “Preparation of Biodiesel from Waste Oils Catalyzed by a Brønsted Acidic Ionic Liquid.” Bioresource Technology 100 (7): 2308–10.Google Scholar

  • Han, X., K. Chen, H. Du, X. J. Tang, C. T. Hung, K. C. Lin, and S. B. Liu. 2016. “Novel Keggin-Type H4PVMo11O40-based Ionic Liquid Catalysts for N-Caprylic Acid Esterification.” Journal of the Taiwan Institute of Chemical Engineers 58: 203–09.Google Scholar

  • Han, X. X., Y. F. He, C. T. Hung, L. L. Liu, S. J. Huang, and S. B. Liu. 2013. “Efficient and Reusable Polyoxometalate-Based Sulfonated Ionic Liquid Catalysts for Palmitic Acid Esterification to Biodiesel.” Chemical Engineering Science 104: 64–72.Google Scholar

  • He, Q., Y. Xu, Y. Teng, and D. Wang. 2008. “Biodiesel Production Catalyzed by Whole-Cell Lipase from Rhizopus Chinensis.” Chinese Journal of Catalysis 29 (1): 41–46.Google Scholar

  • Huang, B., Y. Wang, K. Zhang, Y. Fang, and B. Zhou. 2007. “Synthesis of Pyrrolidonium Acidic Ionic Liquids and Their Catalytic Activity for Esterification of Acetic Acid and Butanol.” Chinese Journal of Catalysis 28 (8): 743–48.Google Scholar

  • Karimi, B., and M. Vafaeezadeh. 2012. “SBA-15-functionalized Sulfonic Acid Confined Acidic Ionic Liquid: A Powerful and Water-Tolerant Catalyst for Solvent-Free Esterifications.” Chemical Communications 48 (27): 3327–29.Google Scholar

  • Li, Y., S. Hu, J. Cheng, and W. Lou. 2014. “Acidic Ionic Liquid-Catalyzed Esterification of Oleic Acid for Biodiesel Synthesis.” Chinese Journal of Catalysis 35 (3): 396–406.Google Scholar

  • Liu, W., P. Yin, X. Liu, S. Zhang, and R. Qu. 2015. “Biodiesel Production from the Esterification of Fatty Acid over Organophosphonic Acid.” Journal of Industrial and Engineering Chemistry 21: 893–99.Google Scholar

  • Liu, Y., Y. T. Wang, T. Liu, and D. J. Tao. 2014. “Facile Synthesis of Fructone from Ethyl Acetoacetate and Ethylene Glycol Catalyzed by SO3H-functionalized Brønsted Acidic Ionic Liquids.” RSC Advances 4 (43): 22520–25.Google Scholar

  • Lokman, I. M., U. Rashid, Z. Zainal, R. Yunus, and Y. H. Taufiq-Yap. 2014. “Microwave-Assisted Biodiesel Production by Esterification of Palm Fatty Acid Distillate.” Journal of Oleo Science 63 (9): 849–55.Google Scholar

  • Lourinho, G., and P. Brito. 2015. “Advanced Biodiesel Production Technologies: Novel Developments.” Reviews in Environmental Science and Bio/Technology 14 (2): 287–316.Google Scholar

  • Meng, L, and Z. Tian. 2011. “Synthesis of Methyllaurate over SO42-/SnO2-SiO2 as Catalyst.” Chemical Industry Times 25: 17–19.Google Scholar

  • Meziant, L., Y. Benchikh, and H. Louaileche. 2014. “Deployment of Response Surface Methodology to Optimize Recovery of Dark Fresh Fig (Ficus Carica L., Var. Azenjar) Total Phenolic Compounds and Antioxidant Activity.” Food Chemistry 162: 277–82.Google Scholar

  • Muhammad, N., Y. A. Elsheikh, M. I. A. Mutalib, A. A. Bazmi, R. A. Khan, H. Khan, and Z. Man. 2015. “An Overview of the Role of Ionic Liquids in Biodiesel Reactions.” Journal of Industrial and Engineering Chemistry 21: 1–10.Google Scholar

  • Olkiewicz, M., N. V. Plechkova, M. J. Earle, A. Fabregat, F. Stüber, A. Fortuny, and C. Bengoa. 2016. “Biodiesel Production from Sewage Sludge Lipids Catalysed by Brønsted Acidic Ionic Liquids.” Applied Catalysis B: Environmental 181: 738–46.Google Scholar

  • Ramachandran, K., T. Suganya, N. N. Gandhi, and S. Renganathan. 2013. “Recent Developments for Biodiesel Production by Ultrasonic Assist Transesterification Using Different Heterogeneous Catalyst: A Review.” Renewable and Sustainable Energy Reviews 22: 410–18.Google Scholar

  • Saravanan, K., B. Tyagi, and H. C. Bajaj. 2012. “Esterification of Caprylic Acid with Alcohol over Nano-Crystalline Sulfated Zirconia.” Journal of Sol-Gel Science and Technology 62 (1): 13–17.Google Scholar

  • Souza, B. S., D. M. Pinho, E. C. Leopoldino, P. A. Suarez, and F. Nome. 2012. “Selective Partial Biodiesel Hydrogenation Using Highly Active Supported Palladium Nanoparticles in Imidazolium-Based Ionic Liquid.” Applied Catalysis A: General 433: 109–14.Google Scholar

  • Suhendra, D., E. R. Gunawan, A. D. Nurita, D. Komalasari, and T. Ardianto. 2017. “Optimization of the Enzymatic Synthesis of Biodiesel from Terminalia Cattapa L. Kernel Oil Using Response Surface Methodology.” Journal of Oleo Science 66 (3): 209–15.Google Scholar

  • Sun, S., and X. Li. 2016. “Functional Ionic Liquids Catalyzed the Esterification of Ricinoleic Acid with Methanol to Prepare Biodiesel: Optimization by Response Surface Methodology.” Journal of the American Oil Chemists' Society 93 (6): 757–64.Google Scholar

  • Talebian-Kiakalaieh, A., N. A. S. Amin, A. Zarei, and I. Noshadi. 2013. “Transesterification of Waste Cooking Oil by Heteropoly Acid (HPA) Catalyst: Optimization and Kinetic Model.” Applied Energy 102: 283–92.Google Scholar

  • Tao, D. J., Y. Dong, Z. J. Cao, F. F. Chen, X. S. Chen, and K. Huang. 2016. “Tuning the Acidity of Sulfonic Functionalized Ionic Liquids for Highly Efficient and Selective Synthesis of Terpene Esters.” Journal of Industrial and Engineering Chemistry 41: 122–29.Google Scholar

  • Tao, D. J., Z. M. Li, Z. Cheng, N. Hu, and X. S. Chen. 2012. “Kinetics Study of the Ketalization Reaction of Cyclohexanone with Glycol Using Brønsted Acidic Ionic Liquids as Catalysts.” Industrial & Engineering Chemistry Research 51 (50): 16263–69.Google Scholar

  • Trinh, H., S. Yusup, and Y. Uemura. 2018. “Optimization and Kinetic Study of Ultrasonic Assisted Esterification Process from Rubber Seed Oil.” Bioresource Technology 247: 51–57.Google Scholar

  • Ullah, Z., M. A. Bustam, and Z. Man. 2015. “Biodiesel Production from Waste Cooking Oil by Acidic Ionic Liquid as a Catalyst.” Renewable Energy 77: 521–26.Google Scholar

  • Vitiello, R., C. Li, V. Russo, R. Tesser, R. Turco, and M. Di Serio. 2017. “Catalysis for Esterification Reactions: A Key Step in the Biodiesel Production from Waste Oils.” Rendiconti Lincei 28 (1): 117–23.Google Scholar

  • Welton, T. 1999. “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis.” Chemical Reviews 99 (8): 2071–84.Google Scholar

  • Zhang, H., F. Xu, X. Zhou, G. Zhang, and C. Wang. 2007. “A Brønsted Acidic Ionic Liquid as an Efficient and Reusable Catalyst System for Esterification.” Green Chemistry 9 (11): 1208–11.Google Scholar

  • Zhang, L., M. Xian, Y. He, L. Li, J. Yang, S. Yu, and X. Xu. 2009. “A Brønsted Acidic Ionic Liquid as an Efficient and Environmentally Benign Catalyst for Biodiesel Synthesis from Free Fatty Acids and Alcohols.” Bioresource Technology 100 (19): 4368–73.Google Scholar

  • Zhao, H., and G. A. Baker. 2013. “Ionic Liquids and Deep Eutectic Solvents for Biodiesel Synthesis: A Review.” Journal of Chemical Technology & Biotechnology 88 (1): 3–12.Google Scholar

  • Zhao, Y., J. Long, F. Deng, X. Liu, Z. Li, C. Xia, and J. Peng. 2009. “Catalytic Amounts of Brønsted Acidic Ionic Liquids Promoted Esterification: Study of Acidity-Activity Relationship.” Catalysis Communications 10 (5): 732–36.Google Scholar

About the article

Received: 2018-06-09

Accepted: 2018-10-06

Revised: 2018-09-11

Published Online: 2018-11-23

Citation Information: International Journal of Chemical Reactor Engineering, 20180144, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0144.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in