Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …

The Catalytic Performance of Sol-Gel Alumina Supported Ti-Ce Catalysts for H2S Selective Oxidation to Elemental Sulfur

H. Mehmet Tasdemir / Yavuz Yagizatli / Sena Yasyerli / Nail Yasyerli
Published Online: 2018-09-28 | DOI: https://doi.org/10.1515/ijcre-2018-0157


In this study, alumina supported Ti-Ce catalysts (10 % by weight and Ti/Ce molar ratio is 4:1) were prepared by using wet impregnation method and their catalytic activities were tested in H2S selective oxidation to elemental sulfur. The support alumina was synthesized by classical (SGC) and modified (SGM) sol-gel methods. The N2 adsorption-desorption, XRD, XPS, EDS and FTIR techniques were used to characterize the synthesized catalysts. The N2 adsorption-desorption isotherms showed that both catalysts have mesoporous structure. Only γ-Al2O3 crystalline phase together with amorphous structure were observed in the XRD patterns. The pyridine adsorbed FTIR analyzes showed that 10 %Ti-Ce@SGC and 10 %Ti-Ce@SGM catalysts have the same Lewis acidity. The activity tests were carried out at 250 °C and with a stoichiometric feed ratio of O2 to H2S being 0.5 for two different reaction times as 150 and 510 min. Complete conversion of H2S was obtained during 180 min. and 330 min. of reaction time over 10 %Ti-Ce@SGC and 10 %Ti-Ce@SGM, respectively. However, all catalysts showed very high sulfur selectivity. Sulfur deposition was detected over 10 %Ti-Ce@SGC catalyst both 150 and 510 min. of reaction time while it was observed after 510 min. of durability test over 10 %Ti-Ce@SGM catalyst. This can be the reason for the earlier loss of catalytic activity 10 %Ti-Ce@SGC than 10 %Ti-Ce@SGM.

Keywords: H2S selective oxidation; elemental sulfur; alumina; titanium; cerium


  • Bineesh, K. V., D. K. Kim, H. J. Cho, and D. W. Park. 2010. “Synthesis of Metal-Oxide Pillared Montmorillonite Clay for the Selective Catalytic Oxidation of H2S.” Journal of Industrial and Engineering Chemistry 16: 593–97.CrossrefWeb of ScienceGoogle Scholar

  • Bineesh, K.V., M.I. Kim, G.H. Lee, M. Selvaraj, and D.W. Park. 2013. “Catalytic Performance of Vanadia-Doped Alumina-Pillared Clay for Selective Oxidation of H2S.” Applied Clay Science 74: 127–34.Web of ScienceCrossrefGoogle Scholar

  • Bineesh, K. V., M. I. Kim, M. S. Park, K. Y. Lee, and D. W. Park. 2011. “Selective Catalytic Oxidation of H2S over V2O5-supported Fe-Pillared Montmorillonite Clay.” Catalysis Today 175: 183–88.Web of ScienceCrossrefGoogle Scholar

  • Brundle, C. R., and C. A. Evans. 1992. “Materials Characterization Series.” In Characterization of Catalytic Materials, edited by I. E. Wachs, 6. Boston: Manning Publications Co.Google Scholar

  • Chorkendorff, I., and J. W. Niemantsverdriet. 2003. Concepts of Modern Catalysis and Kinetics. Weinheim: Wiley-Vch.Google Scholar

  • Chun, S. W., J. Y. Jang, D. W. Park, H. C. Woo, and J. S. Chung. 1998. “Selective Oxidation of H2S to Elemental Sulfur over TiO2/SiO2 Catalysts.” Applied Catalysis B: Environmental 16: 235–43.CrossrefGoogle Scholar

  • Davydov, A. A., V. I. Marshneva, and M. L. Shepotko. 2003. “Metal Oxides in Hydrogen Sulfide Oxidation by Oxygen and Sulfur Dioxide I: The Comparison Study of the Catalytic Activity. Mechanism of the Interactions between H2S and SO2 on Some Oxides.” Applied Catalysis A: General 244: 93–100.CrossrefGoogle Scholar

  • Duong, L. V., B. J. Wood, and J. T. Kloprogge. 2005. “XPS Study of Basic Aluminum Sulphate and Aluminium Nitrate.” Materials Letters 59: 1932–36.CrossrefGoogle Scholar

  • Eslek, D. D., and S. Yasyerli. 2009. “Selectivity and Stability Enhancement of Iron Oxide Catalyst by Ceria Incorporation for Selective Oxidation of H2S to Sulfur.” Industrial & Engineering Chemistry Research 48: 5223–29.CrossrefWeb of ScienceGoogle Scholar

  • Jung, S. J., M. H. Kim, J. K. Chung, M. J. Moon, J. S. Chung, D. W. Park, and H. C. Woo. 2003. “Catalytic Oxidation of H2S to Elemental Sulfur over Mesoporous Nb/Fe Mixed Oxides.” Studies in Surface Science and Catalysis 146: 621–24.CrossrefGoogle Scholar

  • Keller, N., C. P. Huu, C. Crouzet, M. J. Ledoux, S. S. Poncet, J. B. Nougayrede, and J. Bousquet. 1999. “Direct Oxidation of H2S into Sulfur: New Catalysts and Processes Based on SiC Support.” Catalysis Today 53: 535–42.CrossrefGoogle Scholar

  • Keller, N., C. P. Huu, and M. J. Ledoux. 2001. “Continuous Process for Selective Oxidation of H2S over SiC-supported Iron Catalysts into Elemental Sulfur above Its Dewpoint.” Applied Catalysis A: General 217: 205–17.CrossrefGoogle Scholar

  • Kim, M., W. D. Ju, K. H. Kim, and S. S. Hong. 2006. “Selective Oxidation of Hydrogen Sulfide to Elemental Surfur and Ammonium Thiosulfate Using VOx/TiO2 Catalysts.” Studies in Surface Science and Catalysis 159: 225–28.CrossrefGoogle Scholar

  • Ledoux, M. J., and C. P. Huu. 2005. “Carbon Nanostructures with Macroscopic Shaping for Catalytic Applications.” Catalysis Today 102–103: 2–14.Google Scholar

  • Ledoux, M. J., C. P. Huu, N. Keller, J. B. Nougayrède, S. S. Poncet, and J. Bousquet. 2000. “Silicon Carbide Supported NiS2 Catalyst for the Selective Oxidation of H2S in Claus Tail-Gas.” Studies in Surface Science and Catalysis 130: 2891–96.CrossrefGoogle Scholar

  • Li, K. T., C. S. Yen, and N. S. Shyu. 1997. “Mixed-Metal Oxide Catalysts Containing Iron for Selective Oxidation of Hydrogen Sulfide to Sulfur.” Applied Catalysis A: General 156: 117–30.CrossrefGoogle Scholar

  • Liu, X., and R. E. Truitt. 1997. “DRFT-IR Studies of the Surface of γ-Alumina.” Journal of the American Chemical Society 119: 9856–60.CrossrefGoogle Scholar

  • Lo, J. M. H., T. Ziegler, and P. D. Clark. 2011. “H2S Adsorption on γ-Al2O3 Surfaces: A Density Functional Theory Study.” The Journal of Physical Chemistry C 115: 1899–910.CrossrefGoogle Scholar

  • Lowell, S., and J. Shield. 1984. Powder Surface Area and Porosity, second ed. New York: Chapman and Hall.Google Scholar

  • Palma, V., and D. Barba. 2014a. “Low Temperature Catalytic Oxidation of H2S over V2O5/ CeO2 Catalysts.” International Journal of Hydrogen Energy 39: 21524–30.Web of ScienceCrossrefGoogle Scholar

  • Palma, V., and D. Barba. 2014b. “H2S Purification from Biogas by Direct Selective Oxidation to Sulfur on V2O5-CeO2 Structured Catalysts.” Fuel 135: 99–104.Web of ScienceCrossrefGoogle Scholar

  • Rouquerol, J., F. Rouquerol, and K. S. W. Sing. 1998. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. San Diego: Academic Press.Google Scholar

  • Ryczkowski, J. 2001. “IR Spectroscopy in Catalysis.” Catalysis Today 68: 263–381.CrossrefWeb of ScienceGoogle Scholar

  • Şentürk, G. S., E. I. Vovk, V. I Zaikovski, Z. Say, A. M. Soylu, V. I Bukhtiyarov, and E. Ozensoy. 2012. “SOx Uptake and Release Properties of TiO2/Al2O3 and BaO/TiO2/Al2O3 Mixed Oxide Systems as NOx Storage Materials.” Catalysis Today 184: 54–71.CrossrefWeb of ScienceGoogle Scholar

  • Shin, M. Y., D. W. Park, and J. S. Chung. 2001. “Development of Vanadium-Based Mixed Oxide Catalysts for Selective Oxidation of H2S to Sulfur.” Applied Catalysis B: Environmental 30: 409–19.CrossrefGoogle Scholar

  • Smith, B. C. 1999. Fundamentals of Fourier Transform Infrared Spectroscopy. New York: CRC Press.Google Scholar

  • Tasdemir, H. M., Y. Yagizatli, S. Yasyerli, N. Yasyerli, and G. Dogu. 2017. “Ce-O Catalysts for Elemental Sulfur Production via Selective Catalytic Oxidation of H2S.” Journal of the Faculty of Engineering and Architecture of Gazi University 32: 831–41.Web of ScienceGoogle Scholar

  • Tasdemir, H. M., S. Yasyerli, and N. Yasyerli. 2015. “Selective Catalytic Oxidation of H2S to Elemental Sulfur over Titanium Based Ti-Fe, Ti-Cr and Ti-Zr Catalysts.” International Journal of Hydrogen Energy 40: 9989–10001.Web of ScienceCrossrefGoogle Scholar

  • Trueba, M., and S. P. Trasatti. 2005. “γ-Alumina as A Support for Catalyst: A Review for Fundamental Aspects.” European Journal of Inorganic Chemistry 17: 3393–403.Google Scholar

  • Yasyerli, N., and H. M. Tasdemir. 2010. “FTIR Studies of Urea Decomposition over Pt-Alumina and Cu-Alumina Catalysts.” International Journal of Chemical Reactor Engineering 8: A162.Google Scholar

  • Yasyerli, S., G. Dogu, I. Ar, and T. Dogu. 2004. “Dynamic Analysis of Removal and Selective Oxidation of H2S to Elemental Sulfur over Cu-V and Cu-V-Mo Mixed Oxides in a Fixed Bed Reactor.” Chemical Engineering Science 59: 4001–09.CrossrefGoogle Scholar

  • Yasyerli, S., G. Dogu, and T. Dogu. 2006. “Selective Oxidation of H2S to Elemental Sulfur over Ce-V Mixed Oxide and CeO2 Catalysts Prepared by the Complexation Technique.” Catalysis Today 117: 271–78.CrossrefGoogle Scholar

  • Zhang, X., G. Dou, Z. Wang, L. Li, Y. Wang, H. Wang, and Z. Hao. 2013. “Selective Catalytic Oxidation of H2S over Iron Oxide Supported on Alumina-Intercalated Laponite Clay Catalysts.” Journal of Hazardous Materials 260: 104–11.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-06-19

Accepted: 2018-09-18

Published Online: 2018-09-28

Citation Information: International Journal of Chemical Reactor Engineering, 20180157, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0157.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in