Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Ahead of print

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Synthesis and Characterization of Aluminum Containing Silica Aerogel Catalysts for Degradation of PLA

Seda Sivri / Cerag Dilek / Naime Aslı Sezgi
Published Online: 2018-11-28 | DOI: https://doi.org/10.1515/ijcre-2018-0163

Abstract

Aluminum loaded silica aerogel based catalysts were synthesized by impregnation of aluminum into silica aerogel produced using sol-gel method in different aluminum loadings (2.5–15 wt%) to investigate their performances in degradation of polylactic acid (PLA).

Synthesized catalysts showed Type IV isotherm with H1 hysteresis which indicates the mesoporosity of the materials. They have demonstrated favorable properties in terms of high surface area (743–510 m2/g), pore volume (1.79–0.69 cm3/g), and pore diameter (6.38–3.60 nm) depending on aluminum loading amounts.

Thermogravimetric analysis demonstrated that metal loaded silica aerogel catalysts have an influence on degradation profile of PLA. A noticeable reduction in the activation energy for the PLA degradation was attained with an increase in aluminum loading. These findings show that silica aerogel catalysts are promising for the recycling processes of PLA with their pore characteristics and their acidity affect the degradation performance significantly.

Keywords: polylactic acid; PLA; pyrolysis; silica aerogel; aluminum; degradation; recycling

References

  • Åkesson, D., S. Fazelinejad, V. V. Skrifvars, and M. Skrifvars. 2016. “Mechanical Recycling of Polylactic Acid Composites Reinforced with Wood Fibres by Multiple Extrusion and Hydrothermal Ageing.” Journal of Reinforced Plastics and Composites 35 (16): 1248–59.Google Scholar

  • Al-Oweini, R., and H. El-Rassy. 2009. “Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R”Si(OR’)3 Precursors.” Journal of Molecular Structure 919, 140–45.Google Scholar

  • Andrade, M. F., P. M. S. Souza, O. Cavalett, and A. R. Morales. 2016. “Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison between Chemical Recycling, Mechanical Recycling and Composting.” Journal of Polymers and the Environment 24: 372–84.Google Scholar

  • Auras, R. 2002. Poly(Lactic Acid). Encyclopedia of Polymer Science and Technology. New Jersey: JohnWiley& Sons. Inc.Google Scholar

  • Auras, R., B. Harte, and S. Selke. 2004. “An Overview of Polylactides as Packaging Materials.” Macromolecular Bioscience 4(9): 835–64.Google Scholar

  • Auras, R., L. Lim, S. Selke, and H. Tsuji. 2010. Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. New Jersey: John Wiley & Sons, Inc.Google Scholar

  • Aydemir, B., and N.A. Sezgi. 2013. “Alumina and Tungstophosphoric Acid Loaded Mesoporous Catalysts for the Polyethylene Degradation Reaction.” Industrial and Engineering Chemistry Research 52, 15366–71.Google Scholar

  • Aydemir, B., and N.A. Sezgi. 2016. “Pyrolysis of Polyethylene over Aluminum Incorporated MCM-41 Catalyst.” Chemical Engineering Communications 203, 635–41.Google Scholar

  • Aydemir, B., N.A. Sezgi, and T. Doǧu. 2012. “Synthesis of TPA Impregnated SBA-15 Catalysts and Their Performance in Polyethylene Degradation Reaction.” AIChE Journal 58(8): 2466–72.Google Scholar

  • Badia, J. D., E. Strömberg, S. Karlsson, and A. Ribes-Greus. 2012. “Material Valorisation of Amorphous Polylactide. Influence of Thermo-Mechanical Degradation on the Morphology, Segmental Dynamics, Thermal and Mechanical Performance.” Polymer Degradation and Stability 97(4): 670–78.Google Scholar

  • Brüster, B., F. Addiego, F. Hassouna, D. Ruch, J. Raquez, and P. Dubois. 2016. “Thermo-Mechanical Degradation of Plasticized Poly (Lactide) after Multiple Reprocessing to Simulate Recycling : Multi-scaleAnalysis and Underlying Mechanisms.” Polymer Degradation and Stability 131, 132–44.Google Scholar

  • Castro-Aguirre, E., F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras. 2016. “Poly(Lactic Acid)-Mass Production, Processing, Industrial Applications, and End of Life.” Advanced Drug Delivery Reviews 107, 333–66.Google Scholar

  • Chariyachotilert, C., 2011. “Assessment of the Properties of Poly (Lactic Acid) Sheets with Different Amounts of Post-consumer Recycled Poly (Lactic Acid)”. MSc Thesis. Michigan State University.Google Scholar

  • Coats, A. W., and J. P. Redfern. 1964. “Kinetic Parameters from Thermogravimetric Data.” Nature 201, 68–69.Google Scholar

  • Datta, R., and M. Henry. 2006. “Lactic Acid: Recent Advances in Products, Processes and Technologies-A Review.” Journal of Chemical Technology & Biotechnology 81 (7): 1119–29.Google Scholar

  • Davis, P. J., C. J. Brinker, D. M. Smith, and R. A. Assink. 1992. “Pore Structure Evolution in Silica Gel during Aging/Drying II. Effect of Pore Fluids.” Journal of Non-Crystalline Solids 142, 197–207.Google Scholar

  • Deshpande, R., D. M. Smith, and C. J. Brinker 1992. “Preparation of High Porosity Xerogels by Chemical Surface Modification.” US Patent No. 5565142AGoogle Scholar

  • Dorgan, J. R., H. Lehermeier, and M. Mang. 2000. “Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)S.” Journal of Polymers and the Environment 8(1): 1–9.Google Scholar

  • Farah, S., D. G. Anderson, and R. Langer. 2016. “Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review.” Advanced Drug Delivery Reviews 107, 367–92.Google Scholar

  • Fazelinejad, S., D. Akesson, and M. Skrifvars. 2017. “Repeated Mechanical Recycling of Polylactic Acid Filled with Chalk.” Progress in Rubber, Plastics and Recycling Technology 33(1): 1–16.Google Scholar

  • Global Market Insights. 2016. Lactic Acid Market Size by Application, Polylactic Acid (PLA) Market Size by Application, Regional Outlook, Downstream Potential, Price Trend, Competitive Market Share & Forecast, 2016 – 2024. Retrieved May 19, 2018, from https://www.gminsights.com/industry-analysis/lactic-acid-and-polylactic-acid-market

  • Hamad, K., M. Kaseem, H. W. Yang, F. Deri, and Y. G. Ko. 2015. “Properties and Medical Applications of Polylactic Acid: A Review.” Express Polymer Letters 9(5): 435–55.Google Scholar

  • Jarerat, A., Y. Tokiwa, and H. Tanaka. 2006. “Production of Poly (L-Lactide)-Degrading Enzyme by Amycolatopsis Orientalis for Biological Recycling of Poly(L-lactide).” Applied Microbiology and Biotechnology 72(4): 726–31.Google Scholar

  • Lanzotti, A., M. Grasso, G. Staiano, and M. Martorelli. 2015. “The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-Source 3-D Printer.” Rapid Prototyping Journal 21(5): 604–17.Google Scholar

  • Lehermeier, H. J., J. R. Dorgan, and J. D. Way. 2001. “Gas Permeation Properties of Poly(Lactic Acid).” Journal of Membrane Science 190(2): 243–51.Google Scholar

  • Lim, L.-T., R. Auras, and M. Rubino. 2008. “Processing Technologies for Poly (Lactic Acid).” Progress in Polymer Science 33(8): 820–52.Google Scholar

  • Liu, H., R. Zhao, X. Song, F. Liu, S. Yu, S. Liu, and X. Ge. 2017. “Lewis Acidic Ionic Liquid [Bmim]Fecl4 as a High Efficient Catalyst for Methanolysis of Poly (Lactic Acid).” Catalysis Letters 147(9): 2298–305.Google Scholar

  • Lowell, S., J.E. Shields, M.A. Thomas, and M. Thommes. 2006. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Netherlands: Springer.Google Scholar

  • Mclauchlin, A. R., and O. R. Ghita. 2016. “Studies on the Thermal and Mechanical Behavior of PLA-PET Blends.” Applied Polymer Science 133, 44147.Google Scholar

  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2005. Natural Fibers, Biopolymers and Biocomposites. Natural Fibers, Biopolymers, and Biocomposites. Boca Raton: CRC Press.Google Scholar

  • Nayak, J. P., and J. Bera. 2009. “Preparation of Silica Aerogel by Ambient Pressure Drying Process Using Rice Husk Ash as Raw Material.” Transactions of the Indian Ceramic Society 68(2): 91–94.Google Scholar

  • Nishida, H., T. Mori, S. Hoshihara, Y. Fan, Y. Shirai, and T. Endo. 2003. “Effect of Tin on Poly(L-lactic Acid) Pyrolysis.” Polymer Degradation and Stability 81(3): 515–23.Google Scholar

  • Nova Institute 2012. Growth in PLA Bioplastics: a Production Capacity of over 800,000 Tonnes Expected by 2020. Retrieved July 24, 2017, from http://www.bioplasticsmagazine.com/en/news/meldungen/PLA_Growth.php

  • Obalı, Z., N. A. Sezgi, and T. Doğu. 2009. “Performance of Acidic MCM-Like Aluminosilicate Catalysts in Pyrolysis of Polypropylene.” Chemical Engineering Communications 196, 116–30.Google Scholar

  • Obalı, Z., N. A. Sezgi, and T. Doğu. 2011. “The Synthesis and Characterization of Aluminum Loaded SBA-type Materials as Catalyst for Polypropylene Degradation Reaction.” Chemical Engineering Journal 176–177, 202–10.Google Scholar

  • Obalı, Z., N. A. Sezgi, and T. Doğu. 2012. “Catalytic Degradation of Polypropylene over Alumina Loaded Mesoporous Catalysts.” Chemical Engineering Journal 207–208, 421–25.Google Scholar

  • Papong, S., P. Malakul, R. Trungkavashirakun, P. Wenunun, T. Chom-In, M. Nithitanakul, and E. Sarobol. 2014. “Comparative Assessment of the Environmental Profile of PLA and PET Drinking Water Bottles from a Life Cycle Perspective.” Journal of Cleaner Production 65, 539–50.Google Scholar

  • Pei, E., J. Shen, and J. Watling. 2015. “Direct 3D Printing of Polymers onto Textiles: Experimental Studies and Applications.” Rapid Prototyping Journal 21(5): 556–71.Google Scholar

  • Senatov, F. S., K. V. Niaza, M. Y. Zadorozhnyy, A. V. Maksimkin, S. D. Kaloshkin, and Y. Z. Estrin. 2016. “Mechanical Properties and Shape Memory Effect of 3D-Printed PLA-Based Porous Scaffolds.” Journal of the Mechanical Behavior of Biomedical Materials 57: 139–48.Google Scholar

  • Song, X., H. Wang, X. Yang, F. Liu, S. Yu, and S. Liu. 2014. “Hydrolysis of Poly (Lactic Acid) into Calcium Lactate Using Ionic Liquid [Bmim][Oac] for Chemical Recycling.” Polymer Degradation and Stability 110, 65–70.Google Scholar

  • Tokiwa, Y., and A. Jarerat. 2004. “Biodegradation of Poly (L-Lactide).” Biotechnology Letters 26(10): 771–77.Google Scholar

  • Tsuji, H., T. Saeki, T. Tsukegi, H. Daimon, and K. Fujie. 2008. “Comparative Study on Hydrolytic Degradation and Monomer Recovery of Poly (L-Lactic Acid) in the Solid and in the Melt.” Polymer Degradation and Stability 93(10): 1956–63.Google Scholar

  • Tuck, C. O., E. Perez, I. T. Horvath, R. Sheldon, and M. Poliakoff. 2012. “Valorization of Biomass: Deriving More Value from Waste.” Science 337(6095): 695–99.Google Scholar

  • Vink, E. T. H., and S. Davies. 2015. “Life Cycle Inventory and Impact Assessment Data for 2014 IngeoTM Polylactide Production.” Industrial Biotechnology 11(3): 167–80.Google Scholar

  • Wu, D., and M. Hakkarainen. 2015. “Recycling PLA to Multifunctional Oligomeric Compatibilizers for PLA/Starch Composites.” European Polymer Journal 64, 126–37.Google Scholar

  • Wu, X., M. Fan, J. F. Mclaughlin, X. Shen, and G. Tan. 2018. “A Novel Low-Cost Method of Silica Aerogel Fabrication Using Fly Ash and Trona Ore with Ambient Pressure Drying Technique.” Powder Technology 323, 310–22.Google Scholar

About the article

Received: 2018-06-29

Accepted: 2018-11-12

Revised: 2018-10-12

Published Online: 2018-11-28


Citation Information: International Journal of Chemical Reactor Engineering, 20180163, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0163.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in