Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Ahead of print

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Arrhenius Activation Energy Impact in Binary Chemically Reactive Flow of TiO2-Cu- H2O Hybrid Nanomaterial

M. Ijaz Khan / Sohail A. Khan / T. Hayat
  • Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
  • Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80207, Jeddah 21589, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Imran Khan / A. Alsaedi
  • Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80207, Jeddah 21589, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-24 | DOI: https://doi.org/10.1515/ijcre-2018-0183

Abstract

Main motivation of the present research article is to investigate impact of Arrhenius activation energy in stagnation point flow of hybrid nanomaterial towards a stretched surface. Hybrid nanomaterial comprises of two or more types of nanomaterials along with continuous phase liquid. In this study two types of nanofluids are used namely titanium dioxide and copper. Nonlinear system is converted to ordinary system through appropriate transformation. For convergence series solutions, the obtained system is solved using homotopy analysis methods. Lorentz force impact is observed. Graphical results for different physical variables on the velocity, concentration, induced magnetic field and temperature for CuH2O and TiO2Cu/H2O are discussed. The physical aspects of skin friction and Sherwood and Nusselt numbers are discussed by tabulated values.

Keywords: activation energy; nonlinear radiation; hybrid nanofluid; viscous dissipation; lorentz force; chemical reaction

References

  • Alfvén, H. 1942. “Existence of Electromagnetic-Hydrodynamic Waves.” Nature 150: 405–06.Google Scholar

  • Ali, F.M., R. Nazar, N.M. Arifin, and I Pop. 2011. “MHD Boundary Layer Flow and Heat Transfer over a Stretching Sheet with Induced Magnetic Field.” International Journal Heat Massachusetts Transactions 47: 155–62.Google Scholar

  • Buongiorno, J. 2006. “Convective Transport in Nanofluids.” Journal Heat Transfer 128: 240–50.Google Scholar

  • Chen, C.H. 2010. “Combined Effect of Joule Heating and Viscous Dissipation on Magnetohydrodynamic Flow past a Permeable Stretching Surface with Free Convection and Radiative Heat Transfer.” Journal Hest Transfer 132.Google Scholar

  • Choi, S. U. S., and J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” ASME Publications-Fed 231: 99–106.Google Scholar

  • Eastman, J. A., S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson. 2001. “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles.” Applications Physical Letters 78: 718–20.Google Scholar

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018a. “Modeling and Analyzing Flow of Third Grade Nanofluid Due to Rotating Stretchable Disk with Chemical Reaction and Heat Source.” Physica B 537: 116–26.Google Scholar

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018b. “Simulation of Ferromagnetic Nanomaterial Flow of Maxwell Fluid.” Results Physical 8: 34–40.Google Scholar

  • Hayat, T., M. Awais, and S. Asghar. 2013. “Radiative Effects in Three-Dimensional Flow of MHD Eyring-Powell Fluid.” Journal Mathematical Social 21: 379–84.Google Scholar

  • Hayat, T., M.I. Khan, A. Alsaedi, and M. I. Khan. 2017a. “A Modified Homogeneous Heterogeneous Reactions for MHD Stagnation Flow with Viscous Dissipation and Joule Heating.” International Journal Heat Massachusetts Transfer 113: 310–17.Google Scholar

  • Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, M. Waqas, and T. Yasmeen. 2016a. “Mpact of Cattaneo-Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid over a Variable Thicked Surface.” International Journal Heat Massachusetts Transfer 99: 702–10.Google Scholar

  • Hayat, T., M. I. Khan, M. Farooq, T. Yasmeen, and A. Alsaedi. 2016b. “Stagnation Point Flow with Cattaneo-Christov Heat Flux and Homogeneous-Heterogeneous Reactions.” Journal Molecular Liquid 220: 49–55.Google Scholar

  • Hayat, T., M. I. Khan, S. Qayyum, and A. Alsaedi. 2018a. “Entropy Generation in Flow with Silver and Copper Nanoparticles.” Colloid Surf A: Physicoche Engineering Aspect 539: 335–46.Google Scholar

  • Hayat, T., A. Naseem, M. I. Khan, M. Farooq, and A. Alsaedi. 2018b. “Magnetohydrodynamic (MHD) Flow of Nanofluid with Double Stratification and Slip Conditions.” Physical Chemical Liquid 56: 189–208.Google Scholar

  • Hayat, T, S. Qayyum, M. Imtiaz, and A. Alsaedi. 2016c. “Comparative Study of Silver and Copper Water Nanofluids with Mixed Convection and Nonlinear Thermal Radiation.” International Journal Heat Massachusetts Transfer 102: 723–32.Google Scholar

  • Hayat, T., S. Qayyum, M. Imtiaz, and A. Alsaedi. 2017b. “Radiative Flow Due to Stretchable Rotating Disk with Variable Thickness.” Results in Physics 7: 156–65.Google Scholar

  • Hayat, T, S. Qayyum, M. I. Khan, and A. Alsaedi. 2018a. “Entropy Generation in Magnetohydrodynamic Radiative Flow Due to Rotating Disk in Presence of Viscous Dissipation and Joule Heating.” AIP Physical Fluid 30: 017101.Google Scholar

  • Hayat, T., S. Qayyum, M. I. Khan, and A. Alsaedi. 2018b. “Entropy Generation in Magnetohydrodynamic Radiative Flow Due to Rotating Disk in Presence of Viscous Dissipation and Joule Heating.” Physical Fluid 30: 017101.Google Scholar

  • Hayat, T., S. Ullah, M. I. Khan, and A. Alsaedi. 2018c. “On Framing Potential Features of SWCNTs and MWCNTs in Mixed Convective Flow.” Result Physical 8: 357–64.Google Scholar

  • Hayat, T., M. Waqas, M. I. Khan, and A. Alsaedi. 2016d. “Analysis of Thixotropic Nanomaterial in a Doubly Stratified Medium considering Magnetic Field Effects.” International Journal Heat Massachusetts Transfer 102: 1123–29.Google Scholar

  • Hiemenz., K. 1911. “Die Grenzschicht in einem in dem gleichformingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder.” Dingler Polytechnic Journal 326: 321–24.Google Scholar

  • Hossain, A. 1992. “Viscous and Joule Heating Effects on MHD-free Convection Flow with Variable Plate Temperature.” International Journal Heat Massachusetts Transfer 35: 3485–87.Google Scholar

  • Hossain, M.A., and H. S. Takhar. 1996. “Radiation Effect on Mixed Convection along a Vertical Plate with Uniform Surface Temperature.” Heat Massachusetts Transfer 31: 243–48.Google Scholar

  • Javed, M. F., M. I. Khan, N. B. Khan, R. Muhammad, M. U. Rehmand, S. W. Khan, and T. A. Khan. 2018. “Axisymmetric Flow of Casson Fluid by a Swirling Cylinder.” Results Physical 9: 1250–55.Google Scholar

  • Kármán, T. V. 1921. “Über laminare und turbulente Reibung.” ZAMM - Journal App Mathematical Mechanisms 1: 233–52.Google Scholar

  • Khan, M. I., T. Hayat, M. I. Khan, and A. Alsaedi. 2018a. “Activation Energy Impact in Nonlinear Radiative Stagnation Point Flow of Cross Nanofluid.” International Communications Heat Massachusetts Transfer 91: 216–24.Google Scholar

  • Khan, M. I., M. Waqas, T. Hayat, and A. Alsaedi. 2017a. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” Journal Colloid Interface Sciences 498: 85–90.Google Scholar

  • Khan, N. B., and Z. Ibrahim. 2018. “Numerical Investigation of Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder with One-Degree of Freedom at High Reynolds Number Using Different Turbulent Models. Proceedings of the Institution of Mechanical Engineers.” Part M: Journal of Engineering for the Maritime Environment. doi: .CrossrefGoogle Scholar

  • Khan, N. B., Z. Ibrahim, A. B. B. M. Badry, M. Jameel, and M. F. Javed. 2018b. “Numerical Investigation of Flow around Cylinder at Reynolds Number = 3900 with Large Eddy Simulation Technique: Effect of Spanwise Length and Mesh Resolution. Proceedings of the Institution of Mechanical Engineers.” Part M: Journal of Engineering for the Maritime Environment. doi: .CrossrefGoogle Scholar

  • Khan, N. B., Z. Ibrahim, M. I. Khan, T. Hayat, and M. F. Javed. 2018c. “VIV Study of an Elastically Mounted Cylinder Having Low Mass-Damping Ratio Using RANS Model.” International Journal Heat Massachusetts Transfer 121: 309–14.Google Scholar

  • Khan, N. B., Z. Ibrahim, L. T. T. Nguyen, M. F. Javed, and M. Jameel. 2017b. “Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder at High Reynolds Number (Re = 10⁴) and Low Mass Ratio Using the RANS Code.” PloS One 12: e0185832.Google Scholar

  • Malik, S., and A.K. Nayak. 2017. “MHD Convection and Entropy Generation of Nanofluid in a Porous Enclosure with Sinusoidal Heating.” International Journal Heat Massachusetts Transfer 111: 329–45.Google Scholar

  • Pal, D., and G. Mandal. 2017. “Thermal Radiation and MHD Effects on Boundary Layer Flow of Micropolar Nanofluid past a Stretching Sheet with Non-Uniform Heat Source/Sink.” International Journal Mechanisms Sciences 126: 308–18.Google Scholar

  • Qayyum, S., T. Hayat, M. I. Khan, M. I. Khan, and A. Alsaedi. 2018. “Optimization of Entropy Generation and Dissipative Nonlinear Radiative Von Karman's Swirling Flow with Soret and Dufour Effects.” Journal of Molecular Liquids 262: 261–74.Google Scholar

  • Qayyum, S., M. I. Khan, T. Hayat, and A. Alsaedi. 2017. “A Framework for Nonlinear Thermal Radiation and Homogeneous-Heterogeneous Reactions Flow Based on Silver-Water and Copper-Water Nanoparticles: A Numerical Model for Probable Error.” Results Physical 7: 1907–14.Google Scholar

  • Rashidi, M.M., M. Ashraf, B. Rostami, M.T. Rastegari, and S. Bashir. 2013. “Mixed Convection Boundary-Layer Flow of a Micro Polar Fluid Towards a Heated Shrinking Sheet by Homotopy Analysis Method.” Thermal Sciences 2013: 1–15.Google Scholar

  • Rostamian, S.H., M. Biglari, S. Saedodin, and Hemmat, M. Esfe. 2017. “An Inspection of Thermal Conductivity of CuO-SWCNTs Hybrid Nanofluid versus Temperature and Concentration Using Experimental Data, ANN Modeling and New Correlation.” Journal Molecular Liquid 231: 364–69.Google Scholar

  • Sheikholeslami, M., and D. D. Ganji. 2017. “Numerical Modeling of Magnetohydrodynamic CuO-Water Transportation inside a Porous Cavity considering Shape Factor Effect.” Colloid Surf A 529: 705–14.Google Scholar

  • Yin, C., L. Zheng, C. Zhang, and X. Zhang. 2017. “Flow and Heat Transfer of Nanofluids over a Rotating Disk with Uniform Stretching Rate in the Radial Direction.” Propeller Power Research 6: 25–30.Google Scholar

  • Zhang, C., L. Zheng, X. Zhang, and G. Chen. 2015. “MHD Flow and Radiation Heat Transfer of Nanofluids in Porous Media with Variable Surface Heat Flux and Chemical Reaction.” Applications Mathematical Modern 39: 165–81.Google Scholar

About the article

Received: 2018-07-15

Accepted: 2018-09-22

Revised: 2018-09-21

Published Online: 2018-11-24


Citation Information: International Journal of Chemical Reactor Engineering, 20180183, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0183.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in