Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal on Disability and Human Development

Official journal of the the National Institute of Child Health and Human Development in Israel

See all formats and pricing
More options …
Volume 13, Issue 2


Use of structural equation modeling in human development research

Daniel T.L. Shek
  • Corresponding author
  • Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, P.R. China
  • Centre for Innovative Programmes for Adolescents and Families, The Hong Kong Polytechnic University, Hong Kong, P.R. China
  • Kiang Wu Nursing College of Macau, Macau, P.R. China
  • Department of Social Work, East China Normal University, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lu Yu
  • Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-16 | DOI: https://doi.org/10.1515/ijdhd-2014-0302


In social sciences, it is common to hypothesize that latent factors (e.g., psychological well-being) underlie the observed variables (e.g., depression and risk behavior). Hence, it is important to examine the nature of latent variables, the inter-relationships among such variables, and their associations with other predictors and outcome variables. These latent variable-related issues can be well addressed by adopting the approach of structural equation modeling. Apart from describing the use of structural equation modeling in research on human development, this paper also presents the assumptions underlying structural equation modeling, steps of model construction and model assessment, and both the strengths and limitations of this method in human development research. Finally, some examples using structural equation modeling in the Chinese contexts are also illustrated.

Keywords: human development; latent variables analyses; research methods; structural equation modeling


  • 1.

    Bartholomew DJ, Knott M. Latent variable models and factor analysis. London: Edward Arnold, 1999.Google Scholar

  • 2.

    Cureton E. Factor analysis: an applied approach. Hillsdale, NJ: Erlbaum, 1983.Google Scholar

  • 3.

    Fabrigar L, Wegener D, MacCallum R, Strahan, E. Evaluating the use of exploratory factor analysis in psychological research. Psychol Methods 1999;4:272–99.CrossrefGoogle Scholar

  • 4.

    Hox JJ, Bechger TM. An introduction to structural equation modeling. Fam Sci Rev 1998;11:354–73.Google Scholar

  • 5.

    Bentler PM, Chou C. Practical issues in structural modeling. Sociol Method Res 1987;16:78–117.CrossrefGoogle Scholar

  • 6.

    Loehlin JC. Latent variable analysis. Hillsdale, NJ: Lawrence Erlbaum, 1992.Google Scholar

  • 7.

    Byrne BM. Structural equation modeling with AMOS: basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum, 2000.Google Scholar

  • 8.

    Hu LT, Bentler PM. Evaluating model fit. In: Hoyle RH, editor. Structural equation modeling: concepts, issues, and applications. Thousand Oaks, CA: Sage, 1995:76–99.Google Scholar

  • 9.

    Jöreskog KG, Sörbom D. LISREL 7: a guide to the program and applications. Chicago: SPSS Inc, 1998.Google Scholar

  • 10.

    Bentler PM, Bonett DG. Significance tests and goodness of fit in the analysis of covariance structures. Psychol Bull, 1980;88:588–606.CrossrefGoogle Scholar

  • 11.

    Bentler PM. Comparative fit indexes in structural models. Psychol Bull 1990;107:238–46.PubMedCrossrefGoogle Scholar

  • 12.

    Browne MW, Cudeck R. Alternative ways of assessing model fit. In Bollen KA, Long JS, editors. Testing structural equation models. Newbury Park, CA: Sage, 1993:445–55.Google Scholar

  • 13.

    MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for covariance structure modeling. Psychol Methods 1996;1:130–49.CrossrefGoogle Scholar

  • 14.

    Bandalos DL. Factors influencing the cross-validation of confirmatory factor analysis models. Multivar Behav Res 1993;28:351–74.CrossrefGoogle Scholar

  • 15.

    Shek DT. The factorial structure of the Chinese version of the State–Trait Anxiety Inventory: a confirmatory factor analysis. Educ Psychol Meas 1991;51:985–97.CrossrefGoogle Scholar

  • 16.

    Shek DT. Factor structure of the Chinese version of the General Health Questionnaire (GHQ–30): a confirmatory factor analysis. J Clin Psychol 1993;49:678–84.PubMedCrossrefGoogle Scholar

  • 17.

    Shek DT, Cheung CK. Dimensionality of the Chinese dyadic adjustment scale based on confirmatory factor analyses. Soc Indic Res 2008;86:201–12.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    Shek DT, Ma CM. Dimensionality of the Chinese Perceived Causes of Poverty Scale: findings based on confirmatory factor analyses. Soc Indic Res 2009;90:155–164.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Shek DT, Ma CM. The Chinese Family Assessment Instrument (C–FAI): hierarchical confirmatory factor analyses and factorial invariance. Res Social Work Prac 2010;20:112–23.Web of ScienceCrossrefGoogle Scholar

  • 20.

    Shek DT, Ma CM. Dimensionality of the Chinese positive youth development scale: confirmatory factor analyses. Soc Indic Res 2010;98:41–59.Web of ScienceCrossrefGoogle Scholar

  • 21.

    Sun RC, Shek DT. Life satisfaction, positive youth development and problem behaviour among Chinese adolescents in Hong Kong. Soc Indic Res 2010;95:455–74.CrossrefWeb of ScienceGoogle Scholar

  • 22.

    Sun RC, Shek DT. Positive youth development, life satisfaction and problem behavior among Chinese adolescents in Hong Kong: a replication. Soc Indic Res 2012;105:541–59.Web of ScienceCrossrefGoogle Scholar

  • 23.

    McArdle JJ, Epstein D. Latent growth curves within developmental structural equation models. Child Dev 1987;58:110–33.PubMedCrossrefGoogle Scholar

  • 24.

    Bollen KA. Structural equation modeling with latent variables, 2nd ed. New York: Wiley, 1989.Google Scholar

  • 25.

    Muthén BO, Curran PJ. General longitudinal modeling of individual differences in experimental designs: a latent variable framework for analysis and power estimation. Psychol Methods 1997;2(4):371–402.Google Scholar

  • 26.

    Rovine MJ, Molenaar PC. The covariance between level and shape in the latent growth curve model with estimated basis vector coefficients. MPR-Online 1998;3:95–107.Google Scholar

  • 27.

    Curran PJ, Hussong AM. The use of latent trajectory models in psychopathology research. J Abnorm Psychol 2003;112:526–44.PubMedCrossrefGoogle Scholar

  • 28.

    Chou C, Bentler PM. Model modification in structural equation modeling by imposing constraints. Comput Stat Data An 2002;41:271–87.CrossrefGoogle Scholar

  • 29.

    Hox JJ. Multilevel analysis: techniques and Applications. Mahwah, NJ: Lawrence Erlbaum, 2002.Google Scholar

  • 30.

    Algina J, Moulder BC. A note on estimating the Jöreskog-Yang Model for latent lariable interaction using LISREL 8.3. Struc Equ Modeling 2001;8:40–52.Google Scholar

About the article

Corresponding author: Professor Daniel T.L. Shek, PhD, FHKPS, BBS, SBS, JP, Associate Vice President (Undergraduate Programme) and Chair Professor of Applied Social Sciences, Faculty of Health and Social Sciences, Department of Applied Social Sciences, The Hong Kong Polytechnic University, Room HJ407, Core H, Hunghom, Hong Kong, P.R. China, e-mail:

Received: 2013-01-01

Accepted: 2013-02-02

Published Online: 2014-04-16

Published in Print: 2014-05-01

Citation Information: International Journal on Disability and Human Development, Volume 13, Issue 2, Pages 157–167, ISSN (Online) 2191-0367, ISSN (Print) 2191-1231, DOI: https://doi.org/10.1515/ijdhd-2014-0302.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Reyees Farooq
Journal of Advances in Management Research, 2016, Volume 13, Number 1, Page 75

Comments (0)

Please log in or register to comment.
Log in