Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal on Disability and Human Development

Official journal of the the National Institute of Child Health and Human Development in Israel

See all formats and pricing
More options …
Volume 13, Issue 2


Confirmatory factor analysis using AMOS: a demonstration

Daniel T.L. Shek
  • Corresponding author
  • Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, P.R. China
  • Centre for Innovative Programmes for Adolescents and Families, The Hong Kong Polytechnic University, Hong Kong, P.R. China
  • Kiang Wu Nursing College of Macau, Macau, P.R. China
  • Department of Social Work, East China Normal University, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lu Yu
  • Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-28 | DOI: https://doi.org/10.1515/ijdhd-2014-0305


The purpose of this paper is to demonstrate the process of using AMOS to test first- and higher-order confirmatory factor analysis (CFA) models. We performed the analyses with the AMOS 17.0 statistic package, a very user-friendly program for structural equation modeling. In this paper, we describe the concepts, theories, and basic steps of conducting CFA as well as provide a general introduction to the software AMOS. The process of conducting two different types of CFA within the framework of AMOS program (first-order CFA and higher-order or hierarchical CFA) are illustrated based on the data collected from 604 secondary school teachers involved in the Project P.A.T.H.S. in Hong Kong. The factor structure of a subjective outcome evaluation form developed to assess program implementers’ subjective evaluation about the project was examined.

This article offers supplementary material which is provided at the end of the article.

Keywords: AMOS; confirmatory factor analysis; first-order factor model; hierarchical model; research methods


  • 1.

    Reymont R, Jöreskog KG. Applied factor analysis in the natural sciences. Cambridge: Cambridge University Press, 1993.Google Scholar

  • 2.

    Spearman C. General intelligence, objectively determined and measured. Am J Psychol 1904;15:201–93.CrossrefGoogle Scholar

  • 3.

    Thompson B, Dennings B. The unnumbered graphic scale as a data-collection method: An investigation comparing three measurement strategies in the context of Q-technique factor analysis. Paper presented at the annual meeting of the Mid-South Educational Research Association, New Orleans, 1993.Google Scholar

  • 4.

    Kerlinger FN. Foundations of behavioral research, 3rd ed. New York, NY: Holt Rinehart Winston, 1986.Google Scholar

  • 5.

    Gorsuch RL. Factor analysis, 2nd ed. Hillsdale, NJ: Erlbaum Associates, 1983.Google Scholar

  • 6.

    Shek DTL, Yu L. Use of structural equation modeling in human development research. Int J Disabil Human Dev 2014;13:157–67.Google Scholar

  • 7.

    Arbuckle JL. Amos (Version 17.0) [Computer Program]. Chicago, IL: SPSS, 2008.Google Scholar

  • 8.

    Rindskoph D, Rose T. Some theory and applications of confirmatory second-order factor analysis. Multivar Behav Res 1988;23:51–67.CrossrefGoogle Scholar

  • 9.

    Jöreskog KG, Sörbom D. LISREL 8: Structural equation modeling with the SIMPLIS command language. Hillsdale, NJ: Lawrence Erlbaum, 1993.Google Scholar

  • 10.

    Saris WE, Satorra A, Sörbom D. The detection and correction of specification errors in structural equation models. In: Clogg CC, editor. Sociological methodology. San Francisco, CA: Jossey-Bass 1997:105–29.Google Scholar

  • 11.

    Aluja A, Rossier J, Garcia LF, Angleitner A, Kuhlman M, Zuckerman M. A cross-cultural shortened form of the ZKPQ (ZKPQ-50-cc) adapted to English, French, German, and Spanish languages. Pers Indiv Differ 2006;41:619–28.CrossrefGoogle Scholar

  • 12.

    Lei P, Wu Q. Introduction to structural equation modeling: issues and practical considerations. Educ Meas 2007;26:33–43.CrossrefGoogle Scholar

  • 13.

    Akaike H. Factor analysis and AIC. Psychometrika 1987;52:317–32.Web of ScienceCrossrefGoogle Scholar

  • 14.

    Browne MW, Cudeck R. Alternative ways of assessing model fit. In: Bollen KA, Long JS, editors. Testing structural equation models. Newbury Park, CA: Sage, 1993:445–55.Google Scholar

  • 15.

    Arbuckle JL. Amos 17.0 user’s guide. Chicago: SPSS, 2009.Google Scholar

  • 16.

    Jöreskog KG, Sörbom D. LISREL 8.7 for Windows. Lincolnwood, IL: Scientific Software International, 2004.Google Scholar

  • 17.

    Guo B, Perron BE, Gillespie DF. A systematic review of structural equation modelling in social work research. Br J Soc Work 2009;39:1556–74.Web of ScienceCrossrefGoogle Scholar

  • 18.

    Shek DTL, Siu AM, Lui JH, Lung, DW. P.A.T.H.S. to Adulthood: A Jockey Club Youth Enhancement Scheme (evaluation manual). Social Welfare Practice and Research Centre, The Chinese University of Hong Kong, 2006.Google Scholar

  • 19.

    Chou CP, Bentler PM. Estimates and tests in structural equation modeling. In: Hoyle RH, editor. Structural equation modeling: concepts, issues, and applications. Thousand Oaks, CA: Sage, 1995:37–55.Google Scholar

  • 20.

    Bentler PM. Comparative fit indexes in structural models. Psychol Bull 1990;107:238–246.PubMedCrossrefGoogle Scholar

  • 21.

    Byrne BM. Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum, 2001.Google Scholar

  • 22.

    Hu LT, Bentler PM. Evaluating model fit. In: Hoyle RH, editor. Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: Sage, 1995:76–99.Google Scholar

  • 23.

    Jöreskog KG, Aish AM. Structural modeling by example – applications in educational, sociological, and behavioral research. Contemp Psychol 1990;35:687–8.Google Scholar

  • 24.

    Shek DTL, Ma CM. Program implementers’ evaluation of the Project P.A.T.H.S.: findings based on different datasets over time. ScientificWorldJournal 2012, ArticleID 918437, 10 pages. Doi: 10.1100/2012/918437.Google Scholar

  • 25.

    Shek DTL, Yu L. A review of validated youth prevention and positive youth development programmes in Asia. Int J Adolesc Med Health 2011;23:317–24.Google Scholar

  • 26.

    Sun RC, Shek DTL. Positive youth development, life satisfaction and problem behaviour among Chinese adolescents in Hong Kong: a replication. Soc Indic Res 2012;105:541–59.Web of ScienceCrossrefGoogle Scholar

  • 27.

    Shek DTL, Siu AM, Lee TY. Subjective outcome evaluation of the Project P.A.T.H.S.: Findings based on the perspective of the program implementers. ScientificWorldJournal 2007;7:195–203.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Professor Daniel T.L. Shek, PhD, FHKPS, BBS, SBS, JP, Associate Vice President (Undergraduate Programme), and Chair Professor of Applied Social Sciences, Faculty of Health and Social Sciences, Department of Applied Social Sciences, The Hong Kong Polytechnic University, Room HJ407, Core H, Hunghom, Hong Kong, P.R. China, e-mail:

Received: 2013-01-03

Accepted: 2013-02-08

Published Online: 2014-04-28

Published in Print: 2014-05-01

Citation Information: International Journal on Disability and Human Development, Volume 13, Issue 2, Pages 191–204, ISSN (Online) 2191-0367, ISSN (Print) 2191-1231, DOI: https://doi.org/10.1515/ijdhd-2014-0305.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in