Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal on Disability and Human Development

Official journal of the the National Institute of Child Health and Human Development in Israel

See all formats and pricing
More options …
Volume 15, Issue 3


A procedure to correct the effect of heart rate on heart rate variability indices: description and assessment

Mario Estévez-Báez / Calixto Machado / Gerry Leisman
  • Corresponding author
  • The National Institute for Brain and Rehabilitation Sciences, Biomechanics Laboratory, O.R.T.-Braude College of Engineering, 51 Snunit POB 78, Karmiel, Israel
  • The National Institute for Brain and Rehabilitation Sciences, Nazareth, Israel
  • Department of Mechanical Engineering, O.R.T.-Braude College of Engineering, Karmiel
  • Facultad Manuel Fajardo, University of the Medical Sciences, Havana, Cuba
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martha Brown-Martínez / Javier Denis Jas-García / Julio Montes-Brown / Andrés Machado-García / Claudia Carricarte-Naranjo
Published Online: 2015-12-07 | DOI: https://doi.org/10.1515/ijdhd-2015-0014



To develop a method to correct the nonlinear effect of the heart rate (HR) on different heart rate variability (HRV) indices of heart rate variability.


The study included 265 healthy participants (17–69 years old), a group of 36 type 1 diabetes mellitus patients, including 15 patients with positive diagnosis of cardiovascular autonomic neuropathy (CAN), and a group of 24 CAN positive type-2 spinocerebellar ataxia patients. HR and HRV indices were calculated for 5-min resting ECG recordings. The proposed correction method (CM) included the joint application of multiple regression analysis and Z-transformations of HR and HRV indices. To assess the effect of the CM, correlation analysis, multivariate factor analysis, and the ANOVA test were applied to both groups before and after corrections.


The CM was able to remove the effect of HR on HRV indices, and at the same time, were preserved the expected differences between HR and HRV indices between controls and patients. Sample size was not a factor.


Our method may be considered a novel approach, and may represent an alternative to the use of currently developed procedures.


Studies of HRV without an appropriately HR correction should not be considered in the future.

Keywords: autonomic nervous system; cardiovascular autonomic neuropathy; heart rate correction; heart rate variability; spectral analysis


  • 1.

    Cygankiewicz I, Zareba W, Heart rate variability. In: Buijs RM, Swaab DF, editors. Autonomic nervous system, handbook of clinical neurology. Amsetrdam: Elsevier, 2013:379–93.Google Scholar

  • 2.

    Kamath MV, Watanabe MA, Upton AR. Heart rate variability (HRV) signal analysis. clinical applications. Boca Raton, FL: CRC Press, 2013.Google Scholar

  • 3.

    Malik M, Bigger JT, Camm J, Kleiger RE, Malliani A, Moss AJ. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 1996;17:354–81.Google Scholar

  • 4.

    Baron R. Heart rate variability. In: Deuschl G, Eisman A, editors. Recommendations for the practice of clinical neurophysiology: guidelines of the international federation of clinical physiology (EEG) Suppl 52. Amsterdam: Elsevier, 1999:283–6.Google Scholar

  • 5.

    Goldberger JJ, Johnson NP, Subacius H, Ng J, Greenland P. Comparison of the physiological and prognostic implications of the heart rate versus the RR interval. Heart Rhythm 2014;11:1925–33.Google Scholar

  • 6.

    Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension 2014;64:1334–43.Google Scholar

  • 7.

    Nieminen T, Kähönen M, Kööbi T, Nikus K, Viik J. Heart rate variability is dependent on the level of heart rate. Am Heart J 2007;154:e13; author reply e5.Google Scholar

  • 8.

    Pradhapan P, Tarvainen MP, Nieminen T, Lehtinen R, Nikus K, Lehtimaki T. Effect of heart rate correction on pre- and post-exercise heart rate variability to predict risk of mortality-an experimental study on the FINCAVAS cohort. Front Physiol 2014;5:208.Google Scholar

  • 9.

    Sacha J. Why should one normalize heart rate variability with respect to average heart rate. Front Physiol 2013;4:306.Google Scholar

  • 10.

    Sacha J. Heart rate contribution to the clinical value of heart rate variability. Kardiol Pol 2014;72:919–24.Google Scholar

  • 11.

    Sacha J. Interaction between heart rate and heart Rate variability. Ann Noninvasive Electrocardiol 2014;19:207–16.Google Scholar

  • 12.

    Sacha J. Interplay between heart rate and its variability: a prognostic game. Front Physiol 2014;5:347.Google Scholar

  • 13.

    Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Muller A, Piskorski J. How to select patients who will not benefit from ICD therapy by using heart rate and its variability? Int J Cardiol 2013;168:1655–8.Google Scholar

  • 14.

    Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Muller A, Piskorski J. How to strengthen or weaken the HRV dependence on heart rate–description of the method and its perspectives. Int J Cardiol 2013;168:1660–3.Google Scholar

  • 15.

    Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Muller A, Piskorski J. Gender differences in the interaction between heart rate and its variability - How to use it to improve the prognostic power of heart rate variability. Int J Cardiol 2014;171:e42–5.Google Scholar

  • 16.

    Sacha J, Pluta W. Different methods of heart rate variability analysis reveal different correlations of heart rate variability spectrum with average heart rate. J Electrocardiol 2005;38:47–53.Google Scholar

  • 17.

    Sacha J, Pluta W. Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int J Cardiol 2008;128:444–7.Google Scholar

  • 18.

    Sacha J, Sobon J, Sacha K, Barabach S. Heart rate impact on the reproducibility of heart rate variability analysis. Int J Cardiol 2013;168:4257–9.Google Scholar

  • 19.

    Sacha J, Sobon J, Sacha K, Muller A, Schmidt G. Short-term deceleration capacity reveals higher reproducibility than spectral heart rate variability indices during self-monitoring at home. Int J Cardiol 2011;152:271–2.Google Scholar

  • 20.

    Montes-Brown J, Sanchez-Cruz G, Garcia AM, Estevez-Baez M, Velazquez-Perez L. Heart rate variability in type 2 spinocerebellar ataxia. Acta Neurol Scand 2010;122:329–35.Google Scholar

  • 21.

    Montes-Brown J, Machado A, Estevez M, Carricarte C, Velazquez-Perez L. Autonomic dysfunction in presymptomatic spinocerebellar ataxia type-2. Acta Neurol Scand 2012;125:24–9.Google Scholar

  • 22.

    Boulton AJ, Vinik AI, Arrezzo JC, Bril V, Eva L, Feldman EL, et al. Diabetic Neuropathies. A statement by the American Diabetes Association. Diabetes Care 2005;28:956–62.Google Scholar

  • 23.

    Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985;8:491–8.Google Scholar

  • 24.

    Spallone V, Ziegler D, Roy F, Bernardi L, Frontoni S, Pop-Busui R. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 2011;27:639–53.Google Scholar

  • 25.

    Vinik AI, Erbas T. Diabetic autonomic neuropathy. Handb Clin Neurol 2013;117:279–94.Google Scholar

  • 26.

    Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Invest 2013;4:4–18.Google Scholar

  • 27.

    Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007;115:387–97.Google Scholar

  • 28.

    Baevskii RM. Analysis of variability of cardiac rhythm in space medicine. Fiziol Cheloveka 2002;28:70–82.Google Scholar

  • 29.

    Apple S, Kuritzky A, Zahavi I, Zigelman M, Akselrod S. Evidence for instability of the autonomic nervous system in patients with migraine headache. Headache 1992;32:10–7.Google Scholar

  • 30.

    Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S, Trichur R, et al. Influence of age and gender on autonomic regulation of heart. J Clin Monit Comput 2013;27:259–64.Google Scholar

  • 31.

    Dutra SG, Pereira AP, Tezini GC, Mazon JH, Martins-Pinge MC, Souza HC. Cardiac autonomic modulation is determined by gender and is independent of aerobic physical capacity in healthy participants. PLoS One 2013;8:e77092.Google Scholar

  • 32.

    Kapidžić A, Platiša MM, Bojić T, Kalauzi A. Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy participants. Med Eng Phys 2014;36:1577–84.Google Scholar

  • 33.

    Voss A, Schroeder R, Fischer C, Heitmann A, Peters A, Perz S. Influence of age and gender on complexity measures for short term heart rate variability analysis in healthy participants. Proc IEEE Engin Med Biol Soc 2013;2013:5574–7.Google Scholar

  • 34.

    Carricarte C, Montes-Brown J, Machado A, Rodríguez M, Estévez M. Multiple regression analysis applied to heart rate variability study: a methodological approach. Funct Neurol Rehabil Ergon 2012;2:97–103.Google Scholar

  • 35.

    Estévez M, Machado C, Leisman G, Estévez-Hernández T, Arias-Morales A, Machado A, et al. Spectral analysis of heart rate variability. Int J Disabil Hum Dev 2016;15:5–17.Google Scholar

  • 36.

    Montes-Brown J, Estévez M, Almaguer-Medero LE, Machado-García A, Machado C. Heart rate variability dynamics to active orthostatic tests in patients with spinocerebellar ataxia Type 2. Funct Neurol Rehabil Ergon 2012;2:105–13.Google Scholar

  • 37.

    Estévez Báez M, Iglesias-Alfonso J, Sánchez Quesada K, Serra Ortega A, Reyes Mur L, Molina Milián A. Análisis comparatico de indicadores de la actividad cronotrópica cardiaca durante el reposo en decúbito supino en pacientes diabéticos e individuos sanos. Revista CENIC Ciencias Biológicas 1997;28:170–2.Google Scholar

  • 38.

    Estévez Báez M, Iglesias-Alfonso J, Sánchez Quesada K, Serra Ortega A, Reyes Mur L, Molina Milián A. Respuesta a la bipedestación activa en pacientes diabéticos con signos de neuropatía vegetativa cardiovascular. Revista CENIC Ciencias Biológicas 1997;28:172–4.Google Scholar

  • 39.

    Estévez Báez M, Iglesias-Alfonso J, Villar-Olivera C, Manso Pérez R. Neuropatía vegetativa cardiaca. Saude para Todos 1996;7:31–5.Google Scholar

  • 40.

    Istenes I, Korei AE, Putz Z, Nemeth N, Martos T, Keresztes K. Heart rate variability is severely impaired among type 2 diabetic patients with hypertension. Diabetes Metab Res Rev 2014;30:305–12.Google Scholar

  • 41.

    Orlov S, Bril V, Orszag A, Perkins BA. Heart rate variability and sensorimotor polyneuropathy in type 1 diabetes. Diabetes Care 2012;35:809–16.Google Scholar

  • 42.

    Romero-Mestre JC, Pereira-Despaigne OL, Licea-Puig ME, Faget-Cepero O, Perich-Amador P, Márquez-Guillén A. Variabilidad de la frecuencia cardíaca en reposo para detectar neuropatía autonómica cardiovascular en diabéticos tipo I. Rev Cubana End 1999;10:25–37.Google Scholar

  • 43.

    Turker Y, Aslantas Y, Aydin Y, Demirin H, Kutlucan A, Tibilli H. Heart rate variability and heart rate recovery in patients with type 1 diabetes mellitus. Acta Cardiol 2013;68:145–50.Google Scholar

  • 44.

    Brinkley J, Nations L, Abramson RK, Hall A, Wright HH, Gabriels R, et al. Factor analysis of the aberrant Behavior checklist in individuals with autism spectrum disorders. J Autism Dev Disord 2007;37:1949–59.Google Scholar

  • 45.

    Haring L, Mõttus R, Koch K, Trei M, Maron E. Factorial validity, measurement equivalence and cognitive performance of the cambridge neuropsychological test automated battery (CANTAB) between patients with first-episode psychosis and healthy volunteers. Psychol Med 2014; .CrossrefGoogle Scholar

  • 46.

    Norris M, Lecavalier L. Evaluating the use of exploratory factor analysis in developmental disability psychological research. J Autism Dev Disord 2010;40:8–20.Google Scholar

  • 47.

    Allen JJ, Chambers AS, Towers DN. The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biol Psychol 2007;74:243–62.Google Scholar

  • 48.

    Castro N, Medina E, Gomis P, Wong S, Wagner G. Multiple factor analysis of the autonomous nervous system during PTCA. Proc. IEEE Engin Med Biol Soc 2005;1:940–3.Google Scholar

  • 49.

    Fukusaki C, Kawakubo K, Yamamoto Y. Assessment of the primary effect of aging on heart rate variability in humans. Clin Auton Res 2000;10:123–30.Google Scholar

  • 50.

    Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal participants. Am J Cardiol 1991;67:199–204.Google Scholar

  • 51.

    Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol 1992;69:891–8.Google Scholar

  • 52.

    Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Schneider WJ, Stein PK. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 1995;91:936–43.Google Scholar

  • 53.

    Bigger JT Jr, La Rovere MT, Steinman RC, Fleiss JL, Rottman JN, Rolnitzky LM. Comparison of baroreflex sensitivity and heart period variability after myocardial infarction. J Am Coll Cardiol 1989;14:1511–8.Google Scholar

  • 54.

    Coumel P, Maison-Blanche P, Catuli D. Heart rate and heart rate variability in normal young adults. J Cardiovasc Electrophysiol 1994;5:899–911.Google Scholar

  • 55.

    Stauss HM. Heart rate variability: Just a surrogate for mean heart rate? Hypertension 2014;6:1184–6.Google Scholar

  • 56.

    Billman GE. The effect of heart rate on the heart rate variability response to autonomic interventions. Front Physiol 2013;4:222.Google Scholar

  • 57.

    Melenovsky V, Simek J, Sperl M, Malik J, Wichterle D. Relation between actual heart rate and autonomic effects of beta blockade in healthy men. Am J Cardiol 2005;95:999–1002.Google Scholar

  • 58.

    Virtanen M, Kahonen M, Nieminen T, Karjalainen P, Tarvainen M, Lehtimaki T. Heart rate variability derived from exercise ECG in the detection of coronary artery disease. Physiol Meas 2007;28:1189–200.Google Scholar

  • 59.

    Mangin L, Swynghedauw B, Benis A, Thibault N, Lerebours G, Carre F. Relationships between heart rate and heart rate variability: study in conscious rats. J Cardiovasc Pharmacol 1998;32:601–7.Google Scholar

  • 60.

    Zaza A, Lombardi F. Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc Res 2001;50:434–42.Google Scholar

  • 61.

    Huikuri HV, Perkiomaki JS, Maestri R, Pinna GD. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos Trans A Math Phys Eng Sci 2009;367:1223–38.Google Scholar

  • 62.

    Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996;94:2850–5.Google Scholar

  • 63.

    Tsuji H, Venditti FJ Jr., Manders ES, Evans JC, Larson MG, Feldman CL. Determinants of heart rate variability. J Am College Cardiol 1996;28:1539–46.Google Scholar

  • 64.

    Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 1994;90:878–83.Google Scholar

  • 65.

    Binah O, Weissman A, Itskovitz-Eldor J, Michael R, Rosen MR. Integrating beat rate variability: From single cells to hearts. Heart Rhythm 2013;10:928–32.Google Scholar

  • 66.

    Papaioannou VE, Verkerk AO, Amin AS, de Bakker JM. Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr Cardiol Rev 2013;9:82–96.Google Scholar

  • 67.

    Posokhova E, Ng D, Opel A, Masuho I, Tinker A, Biesecker LG. Essential role of the m2R-RGS6-IKACh pathway in controlling intrinsic heart rate variability. PLoS One 2013;8:e76973.Google Scholar

  • 68.

    Zaniboni M, Cacciani F, Lux RL. Beat-to-beat cycle length variability of spontaneously beating guinea pig sinoatrial cells: relative contributions of the membrane and calcium clocks. PLoS One 2014;9:e100242.Google Scholar

  • 69.

    Wydeven N, Posokhova E, Xia Z, Martemyanov KA, Wickman K. RGS6, but not RGS4, is the dominant Regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate. J Biol Chem 2014;289:2440–9.Google Scholar

  • 70.

    van Dijk JG, Koenderink M, Zwinderman AH, Haan J, Kramer CG, den Heijer JC. Autonomic nervous system tests depend on resting heart rate and blood pressure. J Auton Nerv Syst 1991;35:15–24.Google Scholar

  • 71.

    Van Hoogenhuyze D, Weinstein N, Martin GJ, Weiss JS, Schaad JW, Sahyouni XN, et al. Reproducibility and relation to mean heart rate of heart rate variability in normal participants and in patients with congestive heart failure secondary to coronary artery disease. Am J Cardiol 1991;68:1668–76.Google Scholar

  • 72.

    Machado-Ferrer Y, Estevez M, Machado C, Hernandez-Cruz A, Carrick FR, Leisman G. Heart rate variability for assessing comatose patients with different Glasgow Coma Scale scores. Clin Neurophysiol 2013;124:589–97.Google Scholar

  • 73.

    Machado C, Estévez M, Rodríguez R, Pérez-Nellar J, Chinchilla M, DeFina P, et al. Zolpidem arousing effect in persistent vegetative state patients: autonomic, EEG and behavioral assessment. Curr Pharm Des 2014;20:4185–202.Google Scholar

  • 74.

    John ER, Karmel BZ, Corning WC, Easton P, Brown D, Ahn H. Neurometrics. Science 1997;196:1393–410.Google Scholar

About the article

Corresponding author: Gerry Leisman, The National Institute for Brain and Rehabilitation Sciences, Biomechanics Laboratory, O.R.T.-Braude College of Engineering, 51 Snunit POB 78, Karmiel, Israel, E-mail: ; The National Institute for Brain and Rehabilitation Sciences, Nazareth, Israel; Department of Mechanical Engineering, O.R.T.-Braude College of Engineering, Karmiel; and Facultad Manuel Fajardo, University of the Medical Sciences, Havana, Cuba

Received: 2015-06-28

Accepted: 2015-10-17

Published Online: 2015-12-07

Published in Print: 2016-08-01

Citation Information: International Journal on Disability and Human Development, Volume 15, Issue 3, Pages 277–292, ISSN (Online) 2191-0367, ISSN (Print) 2191-1231, DOI: https://doi.org/10.1515/ijdhd-2015-0014.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jakub S. Gąsior, Jerzy Sacha, Mariusz Pawłowski, Jakub Zieliński, Piotr J. Jeleń, Agnieszka Tomik, Tomasz M. Książczyk, Bożena Werner, and Marek J. Dąbrowski
Frontiers in Physiology, 2018, Volume 9
Kazato Oishi, Yukiko Himeno, Masafumi Miwa, Hiroki Anzai, Kaho Kitajima, Yudai Yasunaka, Hajime Kumagai, Seiji Ieiri, and Hiroyuki Hirooka
Frontiers in Physiology, 2018, Volume 9
Jakub S. Gąsior, Jerzy Sacha, Piotr J. Jeleń, Jakub Zieliński, and Jacek Przybylski
Frontiers in Physiology, 2016, Volume 7

Comments (0)

Please log in or register to comment.
Log in