Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

See all formats and pricing
More options …
Volume 14, Issue 3


Investigation of Transmission Line Models for Switching Overvoltages Studies

Iman Sadeghkhani
  • Corresponding author
  • Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 85141-43131, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abbas Ketabi / Rene Feuillet
Published Online: 2013-06-19 | DOI: https://doi.org/10.1515/ijeeps-2012-0004


Overvoltages caused by switching operation of power system equipments might damage some equipment and delay power system restoration. This paper presents a comparison between transmission line (TL) models for overvoltages study and investigates which TL model is most proper for every case study. Both simulation time and accuracy factors of TL models are considered for selecting best TL model. Various cases of switching of transformer, shunt reactor, capacitor bank, and transmission line are investigated and simulation results for a partial of 39-bus New England test system, ‎show that the proposed TL model evaluation increase accuracy and reduce simulation time (accelerate power system restoration) properly.

Keywords: transmission line model; distributed model; lumped-element model; switching overvoltages; power system equipment energization‎


  • 1.

    Adibi MM, Alexander RW, Avramovic B. Overvoltage control during restoration. IEEE Trans Power Syst 1992;7:1464–70. DOI:10.1109/MPER.1992.161434.CrossrefGoogle Scholar

  • 2.

    Adibi MM, Borkoski SM, Kafka RJ. Analytical tool requirements for power system restoration. IEEE Trans Power Syst 1994;9:1582–91. DOI:10.1109/59.336100.CrossrefGoogle Scholar

  • 3.

    Hayashi T, Roberts DP, Walve K. Modeling and simulation of black start and restoration of an electric power system. Results of a questionnaire. Electra 1990;131:157–69.Google Scholar

  • 4.

    Ketabi A, Ranjbar AM, Feuillet R. Analysis and control of temporary overvoltages for automated restoration planning. IEEE Trans Power Deliv 2002;17:1121–7. DOI:10.1109/TPWRD.2002.804005.CrossrefGoogle Scholar

  • 5.

    Morin G. Service restoration following a major failure on the hydroquebec power system. IEEE Trans Power Deliv 1987;2:454–63. DOI:10.1109/TPWRD.1987.4308129.CrossrefGoogle Scholar

  • 6.

    Keokhoungning T, Premrudeepreechacharn S, Ngamsanroaj K. Evaluation of switching overvoltage in 500 kV transmission line interconnection Nam Theun 2 Power Plant to Roi Et 2 substation. In Proceedings of Asia Pacific Power and Energy Engineering Conference, 2009. DOI:10.1109/APPEEC.2009.4918344.Google Scholar

  • 7.

    Soares A Jr, Schroeder MAO, Visacro S. Transient voltages in transmission lines caused by direct lightning strikes. IEEE Trans Power Deliv 2005;20:1447–52. DOI:10.1109/TPWRD.2004.839214.CrossrefGoogle Scholar

  • 8.

    Vanegas A, Velilla E, Herrera J, Valencia JA. An efficient procedure for computing lightning induced overvoltages on overhead lines. In Proceedings of Compatibility and Power Electronics Conf., CPE '09, 200:368–74. DOI:10.1109/CPE.2009.5156062.CrossrefGoogle Scholar

  • 9.

    Thukaram D, Khincha HP, Khandelwal S. Support vector machine approach for the switching transient peak overvoltages during line energization. In Proceedings of IEEE Power Engineering Society Inaugural Conference and Exposition in Africa 2005:180–86. DOI:10.1109/PESAFR.2005.1611810.CrossrefGoogle Scholar

  • 10.

    Ferna’ndez M, Martín F, Steenson P, Me’lique X, Oistein A, Oriols X, et al. A comparison of different approaches for the simulation of nonlinear transmission lines. Microw Opt Technol Lett 2002;33:134–6. DOI:10.1002/mop.10253.CrossrefGoogle Scholar

  • 11.

    Leger AS. Transmission line modeling for the purpose of analog power flow computation of large scale power systems. M.Sc. Thesis, Drexel University, 2005.Google Scholar

  • 12.

    Sadeghkhani I, Ketabi A, Feuillet R. Estimation of temporary overvoltages during power system restoration using artificial neural network. In Proceedings of 15th International Conference on Intelligent System Applications to Power Systems 2009; Curitiba, Brazil. DOI:10.1109/ISAP.2009.5352836.CrossrefGoogle Scholar

  • 13.

    Zgainski F, Caillault B, Renouard V. Validation of power plant transformers re-energization schemes in case of black-out by comparison between studies and field tests measurements. In Proceedings of International Conference on Power Systems Transients, Lyon, France, 2007.Google Scholar

  • 14.

    Ketabi A, Sadeghkhani I, Feuillet R. Using artificial neural network to analyze harmonic overvoltages during power system restoration. Eur Trans Electr Power 2011;21:1941–53. DOI:10.1002/etep.523.Web of ScienceCrossrefGoogle Scholar

  • 15.

    Sybille G, Brunelle P, Hoang L, Dessaint LA, Al-Haddad K. Theory and applications of power system blockset, a MATLAB/Simulink-based simulation tool for power systems. In Proceedings of IEEE Power Eng. Soc. Winter Meeting 2000:774–9. DOI:10.1109/PESW.2000.850165.CrossrefGoogle Scholar

  • 16.

    Ketabi A, Sadeghkhani I. Electric power systems simulation using MATLAB. 2nd ed. Morsal Publications, Kashan, Iran, 2012. (In Persian).Google Scholar

  • 17.

    Duro MM. Damping modelling in transformer energization studies for system restoration: some standard models compared to field measurements. In Proceedings of IEEE Bucharest Power Tech Conference 2009; Bucharest, Romania. DOI:10.1109/PTC.2009.5282236.CrossrefGoogle Scholar

  • 18.

    Sybille G, Gavrilovic MM, Belanger J, Do VQ. Transformer saturation effects on EHV system overvoltages. IEEE Trans Power App Syst 1985;PAS-104:671–80. DOI:10.1109/TPAS.1985.319003.CrossrefGoogle Scholar

  • 19.

    Wunderlich S, Adibi MM, Fischl R, Nwankpa COD. An approach to standing phase angle reduction. IEEE Trans Power Syst 1994;9:470–8. DOI:10.1109/59.317576.CrossrefGoogle Scholar

  • 20.

    Khodabakhchian B, Mahseredjian J, Sehati MR, Mir-Hosseini M. Potential risk of failures in switching EHV shunt reactors in a one-and-a-half breaker scheme. Elect Power Syst Res 2006;76:655–62. DOI:10.1016/j.epsr.2005.12.018.CrossrefGoogle Scholar

  • 21.

    Prikler L, Ban G, Banfai G. EMTP models for simulation of shunt reactor switching transients. Int J Electrical Power Energy Syst 1997;19:235–40. DOI:10.1016/S0142–0615(96)00050–6.CrossrefGoogle Scholar

  • 22.

    Tsirekis CD, Hatziargyriou ND, Papadias BC. Control of shunt reactor inrush currents in the hellenic-interconnected power system. IEEE Trans Power Syst 2005;20:757–64. DOI:10.1109/TPWRD.2004.839180.CrossrefGoogle Scholar

  • 23.

    Coury DV, Santos CJ, Oleskovicz M, Tavares MC. Transient analysis concerning capacitor bank switching in a distribution system. Elect Power Syst Res 2003;65:13–21. DOI:10.1016/S0378–7796(02)00197–9.CrossrefGoogle Scholar

  • 24.

    Hwang C, Lou JN. Transient analysis of capacitance switching for industrial power system by PSpice. Elect Power Syst Res 1998;45:28–38. DOI:10.1016/S0378–7796(97)01218–2.CrossrefGoogle Scholar

  • 25.

    Thukaram D, Khincha HP, Khandelwal S. Estimation of switching transient peak overvoltages during transmission line energization using artificial neural network. Elect Power Syst Res 2006;76:259–69. DOI:10.1016/j.epsr.2005.07.001.CrossrefGoogle Scholar

About the article

Received: 2012-10-30

Accepted: 2013-05-20

Published Online: 2013-06-19

Citation Information: International Journal of Emerging Electric Power Systems, Volume 14, Issue 3, Pages 231–238, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2012-0004.

Export Citation

© 2013 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in