Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

See all formats and pricing
More options …
Volume 14, Issue 6


Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

Alok Pratap
  • Corresponding author
  • Department of Materials, Structural and Energy Engineering, University of the Ryukyus, Okinawa 903-0213, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Naomitsu Urasaki / Tomonobu Senju
Published Online: 2013-10-12 | DOI: https://doi.org/10.1515/ijeeps-2012-0030


This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC–DC–AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

Keywords: fuzzy logic; output power smoothing; pitch control; torque control; wind turbine inertia


  • 1.

    Amini J. Disturbances rejection and harmonics reductionof doubly fed induction generator based wind energyconversion systems. Electric Power Component Syst 2012;40:1423–44.CrossrefGoogle Scholar

  • 2.

    Arifujjaman Md. Reliability comparison of powerelectronic converters for grid-connected 1.5 kW windenergy conversion system. Renewable Energy2013;57:348–57.CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Li H, Chen Z. Design optimization and site matching of direct-drive permanent magnet wind power generator systems. Renewable Energy 2009;34:1175–84.Web of ScienceCrossrefGoogle Scholar

  • 4.

    Geng H, Xu D, Wu B, Yang G. Comparison of oscillation damping capability in three power control strategies for PMSG-based WECS. Wind Energy 2011;14:389–406.Web of ScienceCrossrefGoogle Scholar

  • 5.

    Melcio R, Mendes VM, Catalo JP. Wind turbines equipped with fractional-order controllers: stress on the mechanical drive train due to a converter control malfunction. Wind Energy 2011;14:13–25.Web of ScienceCrossrefGoogle Scholar

  • 6.

    Garcs A, Molinas M. Coordinated control of series-connected offshore wind park based on matrix converters. Wind Energy 2012;15:827–45.Web of ScienceCrossrefGoogle Scholar

  • 7.

    Urtasun A, Sanchis P, San Martn I, Lpez J, Marroyo L. Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking. Renewable Energy 2013;55:138–49.Web of ScienceCrossrefGoogle Scholar

  • 8.

    Abedini A, Nasiri A. Output power smoothing for wind turbine permanent magnet synchronous generators using rotor inertia. Electric Power Component Syst 2008;37:1–19.CrossrefWeb of ScienceGoogle Scholar

  • 9.

    Howlader AM, Urasaki N, Yona A, Senjyu T, Saber AY. Design and implement a digital H robust controller for a MW-class PMSG-based grid-interactive wind energy conversion system. Energies 2013;6:2084–109.CrossrefWeb of ScienceGoogle Scholar

  • 10.

    Kassem AM, Hasaneen KM, Yousef AM. Dynamic modeling and robust power control of DFIG driven by wind turbine at infinite grid. Int J Electrical Power Energy Syst 2013;44:375–82.CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Chang-Chien LR, Yin YC. Strategies for operating wind power in a similar manner of conventional power plant. IEEE Trans Energy Conversion 2009;24:926–34.Web of ScienceCrossrefGoogle Scholar

  • 12.

    Chowdhury MA, Hosseinzadeh N, Shen WX. Smoothing wind power fluctuations by fuzzy logic pitch angle controller. Renewable Energy 2012;38:224–33.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Pratap A, Senjyu T, Yona A, Urasaki N, Funabashi T. A hybrid control method for output power smoothing of a PMSG-based WECS. Int J Emerg Electric Power Syst 2012;12.Google Scholar

  • 14.

    Pratap A, Howlader AM, Senjyu T, Yona A, Urasaki N,Funabashi T. Different strategies for controlling output power smoothing of a PMSG-based wind energy conversion systems. Int J Emerg Electric Power Syst 2012;13.CrossrefGoogle Scholar

  • 15.

    Uehara A, Senjyu T, Yona A, Funabashi T, Chul-Hwan Kim A.Fuzzy-logic based output power smoothing methodof WECS with permanent magnet synchronous generatorusing inertia of wind turbine. J Int Counc Electrical Eng 2011;1:309–16.CrossrefGoogle Scholar

  • 16.

    Luo C, Banakar H, Shen B, Ooi B-T. Strategies to smooth wind power fluctuations of wind turbine generator. IEEE Trans Energy Conversion 2007;22:341–9.CrossrefGoogle Scholar

  • 17.

    Qiao W, Qu L, Harley RG. Control of IPM synchronousgenerator for maximum wind power generationconsidering magnetic saturation. IEEE Trans Ind Appl 2009;45:1095–105.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    Kanellos FD, Hatziargyriou ND. Control of variable speed wind turbines in isolated mode of operation. IEEE Trans Energy Conversion 2008;23:535–43.CrossrefGoogle Scholar

  • 19.

    Uehara A, Pratap A, Goya T, Senjyu T, Yona A, Urasaki N, et al. A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS. IEEE Trans Energy Conversion 2011;26:550–8.CrossrefGoogle Scholar

About the article

Published Online: 2013-10-12

Citation Information: International Journal of Emerging Electric Power Systems, Volume 14, Issue 6, Pages 525–534, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2012-0030.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in