Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

See all formats and pricing
More options …
Volume 14, Issue 6


Rotor Current Control of DFIG for Improving Fault Ride – Through Using a Novel Sliding Mode Control Approach

Guowei Cai / Cheng Liu
  • Corresponding author
  • School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206 China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Deyou Yang
Published Online: 2013-11-09 | DOI: https://doi.org/10.1515/ijeeps-2012-0046


The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter’s variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.

Keywords: wind power; extend state observer; doubly fed induction generator; sliding mode control; rotor current


  • 1.

    Kyaw MM, Ramachandaramurthy VK. Fault ride through and voltage regulation for grid connected wind turbine. Renew Energy 2011;36:206–15.Web of ScienceCrossrefGoogle Scholar

  • 2.

    Ekanayake JB, Holdsworth L, Wu X, Jenkins N. Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans Power Syst 2003;18:803–9.CrossrefGoogle Scholar

  • 3.

    Behera RK, Gao W. A novel controller design for grid-side converter of doubly fed induction generator for wind power interface: an experimental investigation. Electric Power Components Syst 2010;38:1531–45.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Shuhui L, Haskew TA, Muljadi E. Doubly fed induction generator maximum wind power extraction study through integrated steady-state and close-loop control evaluation. Electric Power Components Syst 2010;38:767–85.Web of ScienceGoogle Scholar

  • 5.

    Mohseni M, Masoum MA, Islam SM. Low and high voltage ride-through of DFIG wind turbines using hybrid current controlled converters. Electric Power Syst Res 2011;81:1456–65.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Ullah NR, Thiringer T, Karlsson D. Voltage and transient stability support by wind farms complying with the E.ON Netz Grid Code. IEEE Trans Power Syst 2007;22:1647–56.CrossrefGoogle Scholar

  • 7.

    Flannery PS, Venkataramanan G. A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter. IEEE Trans Power Electron 2008;23:1126–34.CrossrefGoogle Scholar

  • 8.

    Morren J, de Haan SW. Ride through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Trans Energy Conversion 2005;20:435–41.CrossrefGoogle Scholar

  • 9.

    Yang J, Fletcher JE, O’Reilly J. A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions. IEEE Trans Energy Conversion 2010;25:422–32.CrossrefGoogle Scholar

  • 10.

    Xu L. Coordinated control of DFIG’s rotor and grid side converters during network unbalance. IEEE Trans Power Electron 2008;23:1041–9.Web of ScienceGoogle Scholar

  • 11.

    Hu J, He Y, Xu L. Improved rotor current control of wind turbine driven doubly-fed induction generators during network voltage unbalance. Electric Power Syst Res 2010;80:847–56.CrossrefGoogle Scholar

  • 12.

    Petersson A, Harnefors L, Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines. IEEE Trans Power Electron 2005;20:227–35.CrossrefWeb of ScienceGoogle Scholar

  • 13.

    Hu J, Sun D, HE Y, Zhao R. Modeling and control of DFIG wind energy generation system under grid voltage dip. Automation Electric Power Syst 2006;30:21–5 (in Chinese).Google Scholar

  • 14.

    Soares O, Gonçalves H, Martins A, Carvalho A. Nonlinear control of the doubly-fed induction generator in wind power systems. Renew Energy 2010;35:1662–70.CrossrefGoogle Scholar

  • 15.

    Boukhezzar B, Siguerdidjane H. Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Eng Pract 2010;18:1357–68.Web of ScienceCrossrefGoogle Scholar

  • 16.

    Valenciaga F. Second order sliding power control for a variable speed-constant frequency energy conversion system. Energy Conversion Manage 2010;51:3000–08.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Beltran B, Ahmed-Ali T, Hachemi Benbouzid ME. High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Ind Electron 2009;56:3314–21.CrossrefGoogle Scholar

  • 18.

    Oliveira JB, Araujo AD, Dias SM. Controlling the speed of a three-phase induction motor using a simplified indirect adaptive sliding mode scheme. Control Eng Pract 2010;18:577–84.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Matas J, Castilla M, Guerrero JM, de Vicuña LG, Miret J. Feedback linearization of direct-drive synchronous wind-turbines via a sliding mode approach. IEEE Trans Power Electron 2008;23:1093–103.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Galindo R, Cotorogea M, Biel D. Two families of sliding mode controllers for a doubly-fed induction generator in an isolated generation system. In Electronics, Robotics and Automotive Mechanics Conference. Cuernavaca, Morelos, Mexico, 26 September -29 September, 2006:191–6.Google Scholar

  • 21.

    Wangbao FU, Dongli ZH, Lei PA, Honghua XU. Cutting-in control of the VSCF wind-power generator based on auto-disturbance rejection controller. Proc CSEE 2006;26:13–18 (in Chinese).Google Scholar

  • 22.

    Hui Z, Bin L, Youjun Y. The auto-disturbance rejection simulation and research of double-fed wind turbine. Third international conference on measuring technology and mechatronics automation, February 2011:712–15 (in Chinese).Google Scholar

  • 23.

    Su J, Qiu W, Ma H, Woo P-Y. Calibration-free robotic eye-hand coordination based on an auto disturbance-rejection controller. IEEE Trans Robotics 2004;20:899–907.Google Scholar

  • 24.

    Hu J, He Y, Xu L, Williams BW. Improved control of DFIG systems during network unbalance using PI–R current regulators. IEEE Trans Ind Electron 2009;56:439–51.CrossrefGoogle Scholar

  • 25.

    Zhi D, Xu L. Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Trans Energy Conversion 2007;22:110–18.CrossrefGoogle Scholar

  • 26.

    Hu J, Nian H, Hu B, He Y, Zhu ZQ. Direct active and reactive power regulation of DFIG using sliding-mode control approach. IEEE Trans Energy Conversion 2010;25:1028–39.CrossrefWeb of ScienceGoogle Scholar

  • 27.

    Jingqing HA. Active disturbance rejection control technique. Beijing: National Defense Industry Press, 2008.Google Scholar

  • 28.

    Talole SE, Kolhe JP, Phadke SB. Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans Ind Electron 2010;57:1411–19.Web of ScienceCrossrefGoogle Scholar

  • 29.

    Han J-Q. The extended state observer of a class of uncertain systems. Control Decis 1995;10:85–8 (in Chinese).Google Scholar

  • 30.

    Fridman L, Levant A. Sliding mode control in engineering, chap. 3. New York: Marcel Dekker, 2012:53–101.Google Scholar

  • 31.

    Mohseni M, Islam SM, Masoum MA. Enhanced hysteresis-based current regulators in vector control of DFIG wind turbines. IEEE Trans Power Electron 2011;26:223–34.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-11-09

Citation Information: International Journal of Emerging Electric Power Systems, Volume 14, Issue 6, Pages 629–640, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2012-0046.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jian-Hong Liu, Chia-Chi Chu, and Yuan-Zheng Lin
IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, Volume 2, Number 4, Page 749
N. Manonmani, V. Subbiah, and L. Sivakumar
The Scientific World Journal, 2015, Volume 2015, Page 1

Comments (0)

Please log in or register to comment.
Log in