Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei


CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

Online
ISSN
1553-779X
See all formats and pricing
More options …
Volume 14, Issue 6

Issues

Artificial Immune System for Multi-Area Economic Dispatch

Shankha Suvra De / Abhik Hazra / Mousumi Basu
Published Online: 2013-09-28 | DOI: https://doi.org/10.1515/ijeeps-2013-0087

Abstract

This article presents artificial immune system for solving multi-area economic dispatch (MAED) problem with tie line constraints considering transmission losses, multiple fuels, valve-point loading and prohibited operating zones. Artificial immune system is based on the clonal selection principle which implements adaptive cloning, hyper mutation, aging operator and tournament selection. The effectiveness of the proposed algorithm has been verified on three different test systems, both small and large, involving varying degree of complexity. Compared with differential evolution, evolutionary programming and real-coded genetic algorithm, considering the quality of the solution obtained, the proposed algorithm seems to be a promising alternative approach for solving the MAED problems in practical power system.

Keywords: multi-area economic dispatch; tie line constraints; artificial immune system

References

  • 1.

    Chowdhury BH, Rahman S. A review of recent advances in economic dispatch. IEEE Trans Power Syst 1990;5:1248–59.CrossrefGoogle Scholar

  • 2.

    Shoults RR, Chang SK, Helmick S, Grady WM. A practical approach to unit commitment, economic dispatch and savings allocation for multiple-area pool operation with import/export constraints. IEEE Trans Power Apparatus Syst 1980;99:625–35.CrossrefGoogle Scholar

  • 3.

    Romano R, Quintana VH, Lopez R, Valadez V. Constrained economic dispatch of multi-area systems using the Dantzig–Wolfe decomposition principle. IEEE Trans Power Apparatus Syst 1981;100:2127–37.Google Scholar

  • 4.

    Doty KW, McEntire PL. An analysis of electric power brokerage systems. IEEE Trans Power Apparatus Syst 1982;101:389–96.CrossrefGoogle Scholar

  • 5.

    Desell AL, McClelland EC, Tammar K, Van Horne PR. Transmission constrained production cost analysis in power system planning. IEEE Trans Power Apparatus Syst 1984;103:2192–8.CrossrefGoogle Scholar

  • 6.

    Helmick SD, Shoults RR. A practical approach to an interim multi-area economic dispatch using limited computer resources. IEEE Trans Power Apparatus Syst 1985;104:1400–4.CrossrefGoogle Scholar

  • 7.

    Ouyang Z, Shahidehpour SM. Heuristic multi-area unit commitment with economic dispatch. IEE Proc-C 1991;138:242–52.Google Scholar

  • 8.

    Wang C, Shahidehpour SM. A decomposition approach to non-linear multi area generation scheduling with tie-line constraints using expert systems. IEEE Trans Power Syst 1992;7:1409–18.CrossrefGoogle Scholar

  • 9.

    Streiffert D. Multi-area economic dispatch with tie line constraints. IEEE Trans Power Syst 1995;10:1946–51.CrossrefGoogle Scholar

  • 10.

    Wernerus J, Soder L. Area price based multi-area economic dispatch with tie line losses and constraints. In: IEEE/KTH Stockholm Power Tech Conference, Sweden, 1995;710–5.Google Scholar

  • 11.

    Yalcinoz T, Short MJ. Neural networks approach for solving economic dispatch problem with transmission capacity constraints. IEEE Trans Power Syst 1998;13:307–13.CrossrefGoogle Scholar

  • 12.

    Jayabarathi T, Sadasivam G, Ramachandran V. Evolutionary programming based multi-area economic dispatch with tie line constraints. Electric Mach Power Syst 2000;28:1165–76.CrossrefGoogle Scholar

  • 13.

    Chen CL, Chen N. Direct search method for solving economic dispatch problem considering transmission capacity constraints. IEEE Trans Power Syst 2001;16:764–9.CrossrefGoogle Scholar

  • 14.

    de Castro LN, Von Zuben FJ. Artificial immune systems: part I – basic theory and applications. Technical Report, TR-DCA 01/99, 1999.Google Scholar

  • 15.

    de Castro LN, Zuben FJ. Learning and optimization using through the clonal selection principle. IEEE Trans Evol Comput 2002;6:239–51.CrossrefGoogle Scholar

  • 16.

    Nicosia G, Cutello V, Bentley PJ, Timmis J. Artificial immune systems. In: Third International Conference (ICARIS 2004), Catania, Italy, LNCS, Vol. 3239, Springer-Verlag, 2004.Google Scholar

  • 17.

    Cutello V, Morelli G, Nicosia G, Pavone M. Immune algorithms with aging operators for the string folding problem and the protein folding problem. EvoCOP 2005, LNCS, Vol. 3448. Springer, Heidelberg, 2005:80–90.Google Scholar

  • 18.

    Cutello V, Narzisi G, Nicosia G, Pavone M. Real coded clonal selection algorithm for global numerical optimization using a new inversely proportional hypermutation operator. In: The 21st Annual ACM Symposium on Applied Computing, SAC 2006, Dijon, France, April 23–27, Vol. 2. ACM Press, New York, 2006:950–4.Google Scholar

  • 19.

    Cutello V, Nicosia G, Romeo M, Oliveto PS. On the convergence of immune algorithms. In: The First IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007, IEEE Computer Society Press, Los Alamitos, 2007.Google Scholar

  • 20.

    Rahman TK, Suliman SI, Musirin I. Artificial immune – based optimization technique for solving economic dispatch in power systems. Berlin, Heidelberg: Springer-Verlag, 2006:338–45.Google Scholar

  • 21.

    Liao G-C. Short-term thermal generation scheduling using improved immune algorithm. Electric Power Syst Res 2006;76:360–73.CrossrefGoogle Scholar

  • 22.

    Panigrahi BK, Yadav SR, Agrawal S, Tiwari MK. A clonal algorithm to solve economic load dispatch. Electric Power Syst Res 2007;77:1381–9.CrossrefGoogle Scholar

  • 23.

    Walter DC, Sheble GB. Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans Power Syst 1993;8:1325–32.CrossrefGoogle Scholar

  • 24.

    Gaing Z-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 2003;18:1187–95.CrossrefGoogle Scholar

  • 25.

    Chiang C-L. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans Power Syst 2005;20:1690–9.CrossrefGoogle Scholar

  • 26.

    Sinha N, Chakrabarti R, Chattopadhyay PK. Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 2003;7:83–94.CrossrefGoogle Scholar

About the article

Published Online: 2013-09-28


Citation Information: International Journal of Emerging Electric Power Systems, Volume 14, Issue 6, Pages 581–590, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2013-0087.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in