Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei


CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

Online
ISSN
1553-779X
See all formats and pricing
More options …
Volume 14, Issue 6

Issues

Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

Vinicius Suppioni / Ahda P. Grilo
Published Online: 2013-10-30 | DOI: https://doi.org/10.1515/ijeeps-2013-0100

Abstract

In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

Keywords: distributed generation; wind generator; flicker

References

  • 1.

    Thiringer T, Petru T, Lundberg S. Flicker contribution from wind turbines installations. IEEE Trans Energy Conversion 2004;19:157–63.CrossrefGoogle Scholar

  • 2.

    Hui X, Yong L, Huijing L, Hui X. Comparison of two calculation methods of flicker caused by wind power. In Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2011.Google Scholar

  • 3.

    Larsson A. Flicker emission of wind turbines during continuous operation. IEEE Trans Energy Conversion 2002;17:114–18.CrossrefGoogle Scholar

  • 4.

    Lobos T, Rezmer J, Janik P, Amarís H, Alonso M, Álvarez C. Application of wavelets and Prony method for disturbance detection in fixed speed wind farms. Int J Electrical Power Energy Syst 2009;31:429–36.Web of ScienceCrossrefGoogle Scholar

  • 5.

    Barahona B, Sørensen P, Christensen L, Sørensen T, Nielsen HK, Larsén XG. Validation of the standard method for assessing flicker from wind turbines. IEEE Trans Energy Conversion 2011;26:373–8.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Schoene J, McDermott TE, Smith C, Zavadil R, Lamoree J. Flicker from distributed wind generation. In IEEE Power and Energy Society General Meeting, 2011.Google Scholar

  • 7.

    Wei C, Han M, Yan W. Voltage fluctuation and flicker assessment of a weak system integrated wind farm. In IEEE Power and Energy Society General Meeting, 2011.Google Scholar

  • 8.

    Sun T, Chen Z, Blaabjerg F. Flicker study on variable speed wind turbines with doubly fed induction generators. IEEE Trans Energy Conversion 2005;20:896–905.CrossrefGoogle Scholar

  • 9.

    Vilar C, Amarís H, Usaola J. Assessment of flicker next term limits compliance for wind energy conversion system in the frequency domain. Renewable Energy 2006;31:1089–106.CrossrefGoogle Scholar

  • 10.

    Papadopoulos MP, Papathanassiou SA, Tentzerakis ST, Boulaxis NG. Investigation of the flicker emission by grid connected wind turbines. In Proceedings of the 8th International Conference on Harmonics and Quality of Power, 1998:1152–7.Google Scholar

  • 11.

    Ghedamsi K, Aouzellag D. Improvement of the performances for wind energy conversions systems. Int J Electrical Power Energy Syst 2010;32:936–45.Web of ScienceCrossrefGoogle Scholar

  • 12.

    Ackerman T. Wind power in power systems. England: John Wiley & Sons, 2005.Google Scholar

  • 13.

    Papadopoulos MP, Papthanassiou SA, Boulaxis NG, Tentzerakis ST. Voltage quality change by grid-connected wind turbines. In Proceedings of the European Wind Energy Conference, Nice, France, 1–5 Mar 1999:782–5.Google Scholar

  • 14.

    Estanqueiro AI, Tande JO, Peça Lopes JA. Assessment of power quality characteristics of wind farms. In IEEE General Meeting, 2007.Google Scholar

  • 15.

    Wind turbine systems, Part 21: measurement and assessment of power quality characteristic of grid connected wind turbines. In Standard IEC 61400-21, 2008.Google Scholar

  • 16.

    Kassem AM. Robust voltage control of a stand-alone wind energy conversion system based on functional model predictive approach. Int J Electrical Power Energy Syst 2012;41:124–32.CrossrefWeb of ScienceGoogle Scholar

  • 17.

    Kelley N, Jonkman B. TurbSim user’s guide, NWTC design codes. Available at: http://wind.nrel.gov/designcodes/preprocessors/turbsim/. Accessed: 25 Sept 2009.

  • 18.

    Jonkman JM, Buhl Jr. ML. FAST user’s guide. Golden, CO: National Renewable Energy Laboratory, NREL/EL-500-29798, 2005.Google Scholar

  • 19.

    Fadaeinedjad R, Moschopoulos G, Moallem M. The impact of tower shadow, yaw error, and wind shears on power quality in a wind–diesel system. IEEE Trans Energy Conversion 2009;24:102–11.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Fadaeinedjad R, Moallem M, Moschopoulos G, Bassan S. Flicker contribution of a wind power plant with single and multiple turbine representations. In IEEE Canada Electrical Power Conference, 2007.Google Scholar

  • 21.

    Diop AD, Ceanga E, Rétiveau JL, Méthot JF, Ilinca A. Real-time three-dimensional wind simulation for windmill rig tests. Renewable Energy 2007;32:2268–90.Web of ScienceCrossrefGoogle Scholar

  • 22.

    Jonkman JM, Buhl Jr. ML. New development for the NWTC’S FAST aeroelastic HAWT simulator. In 42nd Aeroespace Sciences Meeting and Exhibit Conference, Reno, Nevada, 2004.Google Scholar

  • 23.

    Kundur P. Power system stability and control. New York: McGraw-Hill, 1994.Google Scholar

  • 24.

    IEEE Recommended Practice for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems, IEEE Power Engineering Society.Google Scholar

  • 25.

    White LW, Bhattacharya S. A discrete MatLab–Simulink flickermeter model for power quality studies. IEEE Trans Instrumentation Meas 2010;59:527–33.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Graczyk A. Construction criteria of a digital flickermeter. In 10th International Conference on Electrical Power Quality and Utilisation, EPQU 2009, 2009:1–4.Google Scholar

  • 27.

    Skidmore EL, Tatarko J. Stochastic wind simulation for erosion modeling. Trans ASAE 2000;33:1893–9.Google Scholar

About the article

Published Online: 2013-10-30


Citation Information: International Journal of Emerging Electric Power Systems, Volume 14, Issue 6, Pages 571–580, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2013-0100.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in