Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

See all formats and pricing
More options …
Volume 15, Issue 3


Real-Time Implementation of Type-2 FLC–Based Shunt Active Filter Control Strategies (pq and IdIq) with Different Fuzzy MFs for Power Quality Improvement

Suresh Mikkili
  • Corresponding author
  • Department of Electrical and Electronics Engineering, National Institute of Technology-Goa, Goa, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anup Kumar Panda
Published Online: 2014-04-02 | DOI: https://doi.org/10.1515/ijeeps-2013-0167


This research article proposes the shunt active filter (SHAF) control strategies (pq and IdIq), which are used to improve the power quality of the electrical network by mitigating the harmonics with the help of Type-2 fuzzy logic controller (Type-2 FLC) different membership functions (MFs). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the proposed control strategies has been evaluated in terms of harmonic mitigation and DC link voltage regulation under various source conditions. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Type-2 FLC with different fuzzy MFs (trapezoidal, triangular and Gaussian). The SHAF with proposed Type-2 FLC using Gaussian MF is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed real-time results using real-time digital simulator are presented to support the feasibility of proposed control strategies.

Keywords: Type-2 fuzzy logic controller; triangular; trapezoidal and Gaussian Type-2 fuzzy MFs; shunt active filter; p–q control strategy; Id–Iq control strategy; harmonic mitigation; real-time digital simulator.


  • 1.

    Lyon WV. Reactive power and unbalanced circuits . Electrical World 1920;75:1417–20.Google Scholar

  • 2.

    Budeanu CI. The different options and conceptions regarding active power in non-sinusoidal systems . In: Institute Romaine de energy, pub. No. 4, Bucharest, 1927.Google Scholar

  • 3.

    Fryze S. Wirk, Blind und Scheinleistung in Elektrischen Stromkreisen mit nicht-sinusformigen verlauf von storm and Spannung . ETZ Arch Electrotech 1932;53:596–9, 625–7, 700–2.Google Scholar

  • 4.

    Erlicki MS, Emmanuel-Eigeles A. New aspects of power factor improvements part – I – theoritical basis . IEEE Trans Ind Gen Appl 1968;1GA-4:441–6.CrossrefGoogle Scholar

  • 5.

    Fukao T, Iida H, Miyairi S. Improvements of the power factor of distorted waveforms by thyristor based switching filter . Trans IEE Japan Part B 1970;92:342–9.Google Scholar

  • 6.

    Gyugyi L, Pelly BR. Static power frequency chargers: theory performance and application. New York: Wiley, 1976.Google Scholar

  • 7.

    Harashima F, Inaba H, Tsuboi K. A closed-loop control system for the reduction of reactive power required by electronic converters . IEEE Trans IECI 1976;23:162–6.Google Scholar

  • 8.

    Gyugyi L, Strycula EC. Active power filters . Proc IEEE Ind Appl Annu Meet 1976;19-C:529–35.Google Scholar

  • 9.

    Takahashi I, Fuziwara K, Nabae A. Distorted current compensation system using thyristor based line commutated converters . Trans IEE Japan Part B 1981;101:121–8.Google Scholar

  • 10.

    Akagi H, Kanazawa Y, Nabae A. Principles and compensation effectiveness of instantaneous reactive power compensation devices . In: Meeting of the power semiconductor converters researchers – IEE Japan, SPC-82-16, 1982.Google Scholar

  • 11.

    Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power and its applications . Trans IEE Japan Part B 1983;103:483–90.Google Scholar

  • 12.

    Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components . IEEE Trans Ind Appl 1984;Ia-20:625–30.CrossrefGoogle Scholar

  • 13.

    Soares V, Verdelho P, Marques GD. An instantaneous active and reactive current component method for active filters . IEEE Trans Power Electron 2000;15:660–9.CrossrefGoogle Scholar

  • 14.

    Mikkili S, Panda AK. Real-time implementation of PI and fuzzy logic controllers based shunt active filter control strategies for power quality improvement . Int J Electrical Power Energy Syst 2012;43:1114–26.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Zadeh LA. Fuzzy sets . Inf Control 1965;8:338–53.CrossrefGoogle Scholar

  • 16.

    Mamdani EH. Applications of fuzzy logic to approximate reasoning using linguistic synthesis . IEEE Trans Computers 1977;26:1182–91.CrossrefGoogle Scholar

  • 17.

    Karnik NN, Mendel JM, Liang Q. Type-2 fuzzy logic systems . IEEE Trans Fuzzy Syst 1999;7:643–58.CrossrefGoogle Scholar

  • 18.

    Mikkili S, Panda AK. Performance analysis and real-time implementation of shunt active filter current control strategy with type-1 and type-2 FLC triangular M.F . Eur Trans Electrical Power 2012. .CrossrefGoogle Scholar

  • 19.

    Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning, parts 1, 2, and 3 . Inf Sci 1975;8:199–249;8:301–57;9:43–80.CrossrefGoogle Scholar

  • 20.

    Mendel JM, John RI, Liu F. Interval type-2 fuzzy logic systems made simple . IEEE Trans Fuzzy Syst 2006;14:808–21.Web of ScienceCrossrefGoogle Scholar

  • 21.

    Hagras H. Type-2 FLCs: a new generation of fuzzy controllers . IEEE Comput Intell Mag 2007;2:30–43.CrossrefGoogle Scholar

  • 22.

    Castro J, Castillo O, Martínez LG. Interval type-2 fuzzy logic toolbox . Eng Lett 2007;15:1–10.Google Scholar

  • 23.

    Mikkili S, Panda AK. Simulation and real-time implementation of shunt active filter id –iq control strategy for mitigation of harmonics with different fuzzy membership functions . IET Power Electron 2012;5:1856–72.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    Tenti P, Mattavelli P, Paredes HKM, Conservative power theory, sequence components and accountability in smart grids . In: International school on non-sinusoidal currents and compensation, June 15–18, Łagów, Poland, 2010:37–45.Google Scholar

  • 25.

    Montero MIM, Cadaval ER, Gonzalez FB. Comparison of control strategies for shunt active power filters in three-phase four-wire systems . IEEE Trans Power Electron 2007;22:229–36.CrossrefGoogle Scholar

  • 26.

    RT-LAB Professional [online]. Available at: http://www.opal-rt.com/product/rt-lab-professional.

  • 27.

    Mikkili S, Panda AK. Review of RT-LAB and steps involved for implementation of a Simulink Model from MATLAB to REAL-TIME . Int J Emerging Electric Power Syst 2013;14:641–58. .CrossrefGoogle Scholar

About the article

Published Online: 2014-04-02

Published in Print: 2014-06-01

Citation Information: International Journal of Emerging Electric Power Systems, Volume 15, Issue 3, Pages 217–236, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2013-0167.

Export Citation

©2014 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in