Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

See all formats and pricing
More options …
Volume 16, Issue 1


Analysis of Photovoltaic (PV) Module during Partial Shading based on Simplified Two-Diode Model

B. Chitti Babu
  • Corresponding author
  • Department of Electrical Power Engineering, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Suresh Gurjar / Ashish Meher
Published Online: 2015-01-10 | DOI: https://doi.org/10.1515/ijeeps-2014-0164


Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.

Keywords: photovoltaic (PV) array; two-diode model; partial shading; root mean square deviation (RMSD); ideality constants


  • 1.

    Benner JP, Kazmerski L. Photovoltaic gaining greater visibility. IEEE Spectr 1999;29:34–42.CrossrefGoogle Scholar

  • 2.

    Chan D, Phang J. Analytical methods for the extraction of solarcell, single- and double-diode model parameters from I-V characteristics. IEEE Trans Electron Dev 1987;34:286–93.CrossrefGoogle Scholar

  • 3.

    Walker GR. Evaluating MPPT converter topologies using a Matlab PV model. Aust J Elect Electron Eng 2001;21:49–55.Google Scholar

  • 4.

    Chitti Babu B, Gurjar S. A novel simplified two-diode model of photovoltaic (PV) module. IEEE J Photovolt 2014;4:1156–61.Web of ScienceCrossrefGoogle Scholar

  • 5.

    Villalva MG, et al. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans Power Electron 2009;24:1198–208.Web of ScienceCrossrefGoogle Scholar

  • 6.

    Gupta S, Harpal T, et al. Development of a two diode model for photovoltaic modules suitable for use in simulation studies. In Proceedings of Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2012.Google Scholar

  • 7.

    Salam Z, et al. An improved two-diode photovoltaic(PV) model for PV system. In Proceedings of Joint International Conference on Power Electronics, Drives and Energy System, India, December, 2010, pp. 1–5.Google Scholar

  • 8.

    Yousef Mahmoud et al. A simple approach to modelling and simulation of photovoltaic modules. IEEE Trans Sustain Energy 2012;3:185-6.Web of ScienceGoogle Scholar

  • 9.

    Sah C, Noyce RN, Shockley W. Carrier generation and recombination in p–n junctions and p–n junction characteristics. Proc IRE 1957;45:1228–43.CrossrefGoogle Scholar

  • 10.

    Bishop JW. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuit. Solar Cells 1988;25:73–89.CrossrefGoogle Scholar

  • 11.

    Abete A, Barbisio E, Cane F, Demartini P. Analysis of photovoltaic modules with protection diodes in presence of mismatching. In Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FL, 1990, p. 1005e10.Google Scholar

  • 12.

    Alonso-Garcia MC, Ruiz JM, Chenlo F. Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module. Sol Energy Mat Sol C 2006;90:329–40.CrossrefGoogle Scholar

  • 13.

    Wang Y-J, Hsu P-C. An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy 2011;36:3069–78.CrossrefWeb of ScienceGoogle Scholar

  • 14.

    Patel H, Agarwal V. MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE Trans Energy Convers 2008;23:302–10.CrossrefWeb of ScienceGoogle Scholar

  • 15.

    Liu S, Dougal RA. Dynamic multiphysics model for solar array. IEEE Trans Energy Convers 2002;17:285–94.Google Scholar

  • 16.

    Silvestre S, Boronat A, Chouder A. Study of bypass diodes configuration on PV modules. Appl Energy 1640;86:1632–1640.Web of ScienceGoogle Scholar

  • 17.

    Rensola JC260S. Available at: www.civicsolar.com/sites/default/files/documents/156-series-mono-245-260w-71327.pdf

  • 18.

    KC200GT. High efficiency multicrystal photovoltaic module datasheet Kyocera [Online]. Available at: http://www.kyocera.com.sg/products/solar/pdf/kc200gt.pdf

  • 19.

    IEC. NOCT, PV/61512 testing and measuring equipment [Online] 2005. Available at: http://www.iecee.org/ctl/equipment/pdf/pv/EL_IEC61215_Ed1_final.pdf

About the article

Published Online: 2015-01-10

Published in Print: 2015-02-01

Citation Information: International Journal of Emerging Electric Power Systems, Volume 16, Issue 1, Pages 15–21, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2014-0164.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in