Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei


CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

Online
ISSN
1553-779X
See all formats and pricing
More options …
Volume 16, Issue 4

Issues

Power Quality Issues and Solutions – Review

Suresh Mikkili / Anup Kumar Panda
Published Online: 2015-07-25 | DOI: https://doi.org/10.1515/ijeeps-2014-0052

Abstract

Electrical power quality has been an important and growing problem because of the proliferation of nonlinear loads such as power electronic converters in typical power distribution systems in recent years. Particularly, voltage harmonics and power distribution equipment problems result from current harmonics produced by nonlinear loads. The Electronic equipment like, computers, battery chargers, electronic ballasts, variable frequency drives, and switch mode power supplies, generate perilous harmonics and cause enormous economic loss every year. Problems caused by power quality have great adverse economic impact on the utilities and customers. Due to that both power suppliers and power consumers are concerned about the power quality problems and compensation techniques. Power quality has become more and more serious with each passing day. As a result active power filter gains much more attention due to excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) ac power networks with nonlinear loads. However, this is still a technology under development, and many new contributions and new control topologies have been reported in the last few years. It is aimed at providing a broad perspective on the status of APF technology to the researchers and application engineers dealing with power quality issues.

Keywords: power quality; active power filters; control strategies; harmonics; hysteresis controller

References

  • 1.

    Panda AK, Mikkili S. Fuzzy logic controller based shunt active filter control strategies for power quality improvement using different fuzzy M.F.s. Int J Emerg Electr Power Syst: be press (Berkeley Electronics press), November 2012;13: Article 2.DOI: 10.1515/1553-779X.2942.Google Scholar

  • 2.

    Akagi H. New trends in active filters for power conditioning. IEEE Trans Ind Appl Nov./Dec. 1996;32:1312–22.CrossrefGoogle Scholar

  • 3.

    Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement. IEEE Trans Ind Electron October 1999;46:960–71.CrossrefGoogle Scholar

  • 4.

    Choi JH, Park GW, Dewan SB. Standby power supply with active power filter ability using digital controller. Proc IEEE APEC’ 1995;95:783–9.Google Scholar

  • 5.

    Li Z, Jin H, Joos G. Control of active filters using digital signal processors. Proc IEEE IECON’ 1995;95:651–5.Google Scholar

  • 6.

    Mikkili S, Panda AK. Real-time implementation of PI and fuzzy logic controllers based shunt active filter control strategies for power quality improvement. Int J Elec Power Energy Syst 2012;43:1114–26.CrossrefGoogle Scholar

  • 7.

    Teke A, Saribulut L, Tumay M. A novel reference signal generation method for power-quality improvement of unified power-quality conditioner. IEEE Trans Power Delivery 2011;26:2205–14.CrossrefGoogle Scholar

  • 8.

    Saad S, Zellouma L. Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power. Electr Power Syst Res 2009;79:1337–41.CrossrefGoogle Scholar

  • 9.

    Mekri F, Mazari B, Machmoum M. Control and optimization of shunt active power filter parameters by fuzzy logic. Can J Electr Comput Eng Summer 2006;31:127–34.CrossrefGoogle Scholar

  • 10.

    Kirawanich P, O’Connell RM. Fuzzy logic control of an active power line conditioner. IEEE Trans Power Electron Nov. 2004;19:1574–85.CrossrefGoogle Scholar

  • 11.

    Jain SK, Agrawal P, Gupta HO. Fuzzy logic controlled shunt active power filter for power quality improvement. IEEE Proc Electr Power Appl 2002;149.CrossrefGoogle Scholar

  • 12.

    Mikkili S, Panda AK. Types-1 and –2 fuzzy logic controllers-based shunt active filter id–iq control strategy with different fuzzy membership functions for power quality improvement using RTDS hardware. IET Power Electron April 2013;6:818–33.CrossrefGoogle Scholar

  • 13.

    Cirrincione M, Pucci M, Vitale G, Miraoui A. Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering. IEEE Trans Ind Electron August 2009;56:3128–43.CrossrefGoogle Scholar

  • 14.

    Cirrincione M, Pucci M, Vitale G. A single-phase DG generation unit with shunt active power filter capability by adaptive neural filtering. IEEE Trans Ind Electron May 2008;55:2093–110.CrossrefGoogle Scholar

  • 15.

    Lin HC. Intelligent neural network-based fast power system harmonic detection, IEEE Trans Ind Electron, 54, February 2007.Google Scholar

  • 16.

    Abdeslam DO, Wira P, Mercklé J, Flieller D, Chapuis Y-A. A unified artificial neural network architecture for active power filters. IEEE Trans Ind Electron February 2007;54:61–76.CrossrefGoogle Scholar

  • 17.

    Alcántara FJ, Salmerón P. A new technique for unbalance current and voltage estimation with neural networks. IEEE Trans Power Syst May 2005;20:852–58.CrossrefGoogle Scholar

  • 18.

    Vazquez JR, Salmeron P. Active power filter control using neural network technologies. IEEE Proc Electr Power Appl 2003;150:139–45.CrossrefGoogle Scholar

  • 19.

    Rafiei SMR, Ghazi R, Toliyat HA. IEEE-519-based real-time and optimal control of active filters under non-sinusoidal line voltages using neural networks. IEEE Trans Power Delivery July 2002;17:815–22.CrossrefGoogle Scholar

  • 20.

    Chen Y-M, O’Connell RM. Active power line conditioner with a neural network control. IEEE Trans Ind Appl July/August 1997;33:1131–36.CrossrefGoogle Scholar

  • 21.

    Bhattacharya S, Divan DM, Hybrid series active/parallel passive power line conditioner with controlled harmonic injection U.S. Patent 5465203, November 1995.Google Scholar

  • 22.

    Rukonuzzaman M, Nakaoka M. Single-phase shunt active power filter with harmonic detection. IEE Proc Elec Power Appl 2002;149:343–50.CrossrefGoogle Scholar

  • 23.

    Liew AC. Excessive neutral currents in three-phase fluorescent lighting circuits. IEEE Trans Ind Appl July/August 1989;25:776–82.CrossrefGoogle Scholar

  • 24.

    Gruzs TM. A survey of neutral currents in three-phase computer power systems. IEEE Trans Ind Appl July/August 1990;26:719–25.CrossrefGoogle Scholar

  • 25.

    Peng FZ, Ott Jr GW, Adams DJ. Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems. IEEE Trans Power Electron November 1998;13:1174–81.CrossrefGoogle Scholar

  • 26.

    Mikkili S, Panda AK. FLC based shunt active filter (p–q and id–iq) control strategies for mitigation of harmonics with different fuzzy MFs using MATLAB and real-time digital simulator. Int J Electr Power Energy Syst May, 2013;47:313–36.CrossrefGoogle Scholar

  • 27.

    Mansoor A, Grady WM, Staats PT, Thallam RS, Doyle MT, Samotyj MJ. Predicting the net harmonic currents produced by large numbers of distributed single-phase computer loads. IEEE Trans Power Delivery Oct. 1994;10:2001–6.CrossrefGoogle Scholar

  • 28.

    Active Filters: Technical Document, 2100/1100 Series, Mitsubishi Electric Corp., Tokyo, Japan, 1989:1–36.Google Scholar

  • 29.

    Kikuchi AH, Active power filters in Toshiba GTR Module (IGBT) Application Notes, Toshiba Corp., Tokyo, Japan, 1992:44–5.Google Scholar

  • 30.

    Moran SA, Brennen MB, Active power line conditioner with fundamental negative sequence compensation U.S. Patent 5 384 696, Jan. 1995.Google Scholar

  • 31.

    Mikkili S, Panda AK. RTDS hardware implementation and simulation of 3-ph 4-wire SHAF for mitigation of current harmonics with p–q and id-iq control strategies using fuzzy logic controller. Int J Emerg Electr Power Syst: Be Press Aug. 2011;12:Article 5:1–24.Google Scholar

  • 32.

    Shipp DD. Harmonic analysis, suppression for electrical systems supplying static power converters, other nonlinear loads. IEEE Trans Ind Appl Sept./Oct. 1979;15:453–8.CrossrefGoogle Scholar

  • 33.

    Rossetto L, Tenti P. Evaluation of instantaneous power terms in multi-phase systems: techniques, application to power-conditioning equipment. Eur Trans Electr Power Eng Nov./Dec. 1994;4:469–75.CrossrefGoogle Scholar

  • 34.

    Czarnecki LS. Combined time-domain, frequency-domain approach to hybrid compensation in unbalanced non sinusoidal systems. Eur Trans Electr Power Eng Nov./Dec. 1994;4:477–84.CrossrefGoogle Scholar

  • 35.

    Chaoui A, Krim F, Gaubert J-P, Rambault L. DPC controlled three-phase active filter for power quality improvement. Int J Electr Power Energy Syst 2008;30:476–85.CrossrefGoogle Scholar

  • 36.

    Zaveri N, Chudasama A. Control strategies for harmonic mitigation and power factor correction using shunt active filter under various source voltage conditions. Int J Electr Power Energy Syst 2012;42:661–71.CrossrefGoogle Scholar

  • 37.

    Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans Ind Appl May/June 1984;Ia-20:625–30.CrossrefGoogle Scholar

  • 38.

    Akagi H, et al. Instantaneous power theory and applications to power conditioning. NJ: IEEE Press/Wiley-Inter-science, 2007. ISBN 978-0-470-10761-4.Google Scholar

  • 39.

    Akagi H, Kanazawa Y, Nabae A, Generalized theory of the instantaneous reactive power in three-phase circuits in Proc. IPEC Tokyo, 1983:1375–86.Google Scholar

  • 40.

    Ferrero A, Furga GS. A new approach to the definition of power components in three-phase systems under non-sinusoidal conditions. IEEE Trans Instrum Meas June 1991;40:568–77.CrossrefGoogle Scholar

  • 41.

    Akagi H, Nabae A. The p–q theory in three-phase systems under non-sinusoidal conditions. Eur Trans Electr Power Eng Jan./Feb.1993;3:27–31.CrossrefGoogle Scholar

  • 42.

    Zhou Z, Liu Y. Pre-sampled data based prediction control for active power filters. Int J Electr Power Energy Syst 2012;37:13–22.CrossrefGoogle Scholar

  • 43.

    Soares V, Verdelho P, Marques GD. An instantaneous active and reactive current component method for active filters. IEEE Trans Power Electron 2000;15:660–9.CrossrefGoogle Scholar

  • 44.

    Soares V, et al. Active power filter control circuit based on the instantaneous active and reactive current id –iq method. IEEE Power Electronics Specialists Conference 1997:1096–101.Google Scholar

  • 45.

    Willems JL. Current compensation in three-phase power systems. Eur Trans Electr Power Eng Jan./Feb. 1993;3:61–6.CrossrefGoogle Scholar

  • 46.

    Mikkili S, Panda AK. RTDS hardware implementation and simulation of SHAF for mitigation of harmonics using p–q control strategy with PI and fuzzy logic controllers. Front Electr Electron Eng 2012;7:427–37.Google Scholar

  • 47.

    Rodriguez P, Candela JI, Luna A, Asiminoaei L. Current harmonics cancellation in three-phase four-wire systems by using a four-branch star filtering topology. IEEE Trans Power Electron Aug. 2009;24:1939–50.CrossrefGoogle Scholar

  • 48.

    Montero MIM, Cadaval ER, Gonzalez FB. Comparison of control strategies for shunt active power filters in three-phase four wire systems. IEEE Trans Power Electron 2007;22:229–36.CrossrefGoogle Scholar

  • 49.

    Salmeron P, Herrera RS. Distorted and unbalanced systems compensation within instantaneous reactive power framework. IEEE Trans Power Delivery 2006;21:1655–62.CrossrefGoogle Scholar

  • 50.

    Mikkili S, Panda AK. Simulation and real-time implementation of shunt active filter id–iq control strategy for mitigation of harmonics with different fuzzy membership functions. IET Power Electron 2012. doi: 10.1049/iet-pel.2012.0254.

  • 51.

    Holh I. -‘Pulse width modulation – A survey. IEEE Trans Ind Electron 1999;39:410–211.Google Scholar

  • 52.

    Albanna A, Hatziadoniu CJ, Harmonic analysis of hysteresis controlled grid-connected inverters, in proc. IEEE/PES Power Systems Conference and Exposition (PSCE ‘09), 2009:1–8.Google Scholar

  • 53.

    Karaarslan A, Hysterisis control of power factor correction with a new approach of sampling technique, in proc. IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 2008:765–69.Google Scholar

  • 54.

    Mekri F, Machmoum M, Ahmed NA, Mazari B, A Fuzzy hysteresis voltage and current control of An Unified Power Quality Conditioner, in proc. 34th Annual Conference of IEEE IECON, 2008:2684–89.Google Scholar

  • 55.

    Sasaki H, Machida T. A new method to eliminate AC harmonic currents by magnetic flux compensation-considerations on basic design. IEEE Trans Power App Syst Jan. 1971;PAS-90:2009–19.CrossrefGoogle Scholar

  • 56.

    Harmonic currents, static VAR systems ABB Power Systems, Stockholm, Sweden, Inform. NR500-015E, Sept. 1988, 1–13.Google Scholar

  • 57.

    Akagi H, Atoh S, Nabae A. Compensation characteristics of active power filter using multi series voltage-source PWM converters. Electr Eng Jpn 1986;106:28–36.CrossrefGoogle Scholar

  • 58.

    Fukuda S, Yamaji M, Design, characteristics of active power filter using current source converter in Conf. Rec. IEEE-IAS Annu. Meeting, 1990:965–70.Google Scholar

  • 59.

    Duffey CK, Stratford RP. Update of harmonic standard IEEE- 519: IEEE recommended practices, requirements for harmonic control in electric power systems. IEEE Trans Ind Appl Nov./Dec. 1989;25:1025–34.CrossrefGoogle Scholar

  • 60.

    Singh BN, Singh B, Chandra A, Al-Haddad K, DSP based implementation of sliding mode control on an active filter for voltage regulation and compensation of harmonics, power factor and unbalance of nonlinear loads, in proc. 25th Annual Conference of the IEEE IECON ‘99 1999;2: 855–60.Google Scholar

  • 61.

    Ferreira F, Monteiro L, Afonso JL, Couto C, A control strategy for a three-phase four-wire shunt active filter, in proc. 34th Annual Conference of IEEE IECON, 2008:411–16.Google Scholar

  • 62.

    Dixon J, Contardo J, Moran L, DC link fuzzy control for an active power filter, sensing the line current only, in proc. 28th Annual IEEE Power Electronics Specialists Conference (PESC ‘97), 1997;2:1109–14.Google Scholar

  • 63.

    Mikkili S, Panda AK. Real-time implementation of shunt active filter p–q control strategy for mitigation of harmonics with different fuzzy M.F.s. J Power Electron (JPE) (KIPE – South Korea) 2012;12:821–9.CrossrefGoogle Scholar

  • 64.

    Le Roux AD, Du Toit JA, Enslin JHR. Integrated active rectifier and power quality compensator with reduced current measurement. IEEE Trans Ind Electron 1999;46:504–11.CrossrefGoogle Scholar

  • 65.

    Mikkili S, Panda AK. Simulation and real-time implementation of shunt active filter id-iq control strategy for mitigation of harmonics with different fuzzy membership functions. IET Power Electron Nov. 2012;5:1856–72.CrossrefGoogle Scholar

  • 66.

    Mikkili S, Panda AK. Real-time implementation of shunt active filter p–q control strategy for mitigation of harmonics with different fuzzy M.F.s. J Power Electron (JPE) (KIPE- South Korea) Sept. 2012;12:821–9.CrossrefGoogle Scholar

  • 67.

    Mikkili S, Panda AKPerformance analysis and real-time implementation of shunt active filter current control strategy with type-1 and type-2 FLC triangular M.F International Transactions on Electrical Energy Systems – John Wiley & Sons Ltd, DOI: 10.1002/etep.1698, 2013.Google Scholar

  • 68.

    Kirawanich P, Connell RM. Fuzzy logic control of an active power line conditioner. IEEE Trans Power Electron November 2004;19.CrossrefGoogle Scholar

  • 69.

    Uriarte FM, Hysteresis Modeling by Inspection, in proc. 38th North American Power Symposium, 2006:187–91.Google Scholar

  • 70.

    Zadeh LA. Fuzzy logic. Computer 1988;21:83–93.CrossrefGoogle Scholar

  • 71.

    Zhao J, Bose BK Evaluation of membership functions for fuzzy logic controlled induction motor drive, in proc. 28th Annual Conference of IECON, 2002;1:229–34.PubMedGoogle Scholar

  • 72.

    Zadeh LA, Toward a restructuring of the foundations of fuzzy logic (FL), in proc. IEEE International Conference on World Congress on Computational Intelligence Fuzzy Systems, 1998;2:1676–77.Google Scholar

  • 73.

    Zadeh LA, From fuzzy logic to extended fuzzy logic – A first step, in proc. IEEE Annual Meeting of the North American Fuzzy Information Processing Society, 2009:1–2.Google Scholar

  • 74.

    Elmitwally A, Abdelkader S, Elkateb M. Performance evaluation of fuzzy controlled three and four wire shunt active power conditioners. Proc IEEE Power Eng Soc Winter Meeting 2000;3:1650–5.Google Scholar

  • 75.

    Zadeh LA, Fuzzy logic: issues, contentions and perspectives, in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1994;vi.Google Scholar

  • 76.

    Jang J-SR, Sun C-T, Mizutani E. Neuro-fuzzy and soft computing. NJ: Prentice-Hall, 1997.Google Scholar

  • 77.

    Lee CC. Fuzzy logic in control systems: fuzzy logic controller – part 1. IEEE Trans Syst Man Cybernet 1990;20:404–18.CrossrefGoogle Scholar

  • 78.

    Lee CC. Fuzzy logic in control systems: fuzzy logic controller – part 2. IEEE Trans Syst Man Cybernet 1990;20:419–35.CrossrefGoogle Scholar

  • 79.

    Kosko B. Neural networks and fuzzy systems: a dynamical systems approach. NJ: Prentice Hall, 1991.Google Scholar

  • 80.

    Bose BK. Modern power electronics and AC drives. Upper Saddle River, NJ: Prentice Hall, 2002.Google Scholar

About the article

Published Online: 2015-07-25

Published in Print: 2015-08-01


Citation Information: International Journal of Emerging Electric Power Systems, Volume 16, Issue 4, Pages 357–384, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2014-0052.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in