Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

CiteScore 2018: 0.86

SCImago Journal Rank (SJR) 2018: 0.220
Source Normalized Impact per Paper (SNIP) 2018: 0.430

See all formats and pricing
More options …
Volume 16, Issue 4


Real-Time Digital Simulation and Analysis of Sliding Mode and P&O MPPT Algorithms for a PV System

Venkata Ratnam Kolluru
  • Corresponding author
  • Department of Electronics & Communication Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kamalakanta Mahapatra
  • Department of Electronics & Communication Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bidyadhar Subudhi
  • Department of Electrical Electronics Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-25 | DOI: https://doi.org/10.1515/ijeeps-2015-0010


This paper presents an integral Sliding Mode Controller (SMC) of a DC-DC boost converter integrated with a photovoltaic (PV) system for maximum power extraction. In view of improving the steady-state performance of the maximum power point tracking (MPPT), an integral of the error term is included in the sliding surface. The output of PV panels is connected to a DC-DC boost converter to regulate and enhance the voltage up to a desired level. By using SMC with integral term, the steady-state condition is obtained at less than 0.1 sec. With the proposed ISMC MPPT the maximum power extracted is more than 10% than the traditional Perturb & Observe (P&O) MPPT at standard test conditions (STC). The results obtained using the SMC are compared with that of the fixed step size P&O MPPT controller. The performances of the proposed sliding mode controller and the P&O controller are validated through experimentations using a Real-Time Digital Simulator (RTDS)-Opal RT.

Keywords: PV; MPPT; DC-DC Boost Converter; P&O; RTDS; SMC; STC


  • 1.

    Seo GS, Lee KC, Cho BH. A new DC anti islanding technique of electrolytic capacitor less photovoltaic interface in DC distribution systems. IEEE Trans Power Electron 2013;28:1632–41.CrossrefWeb of ScienceGoogle Scholar

  • 2.

    Kolluru VR, Mahapatra K, Subudhi B, Development and implementation of control algorithms for a photovoltaic system, IEEE Conf. SCES’13, 1–5, June 2013, India.Google Scholar

  • 3.

    Photovoltaic System Design, CEDT-IISc, 1–52, November 2011.Google Scholar

  • 4.

    Hsieh Y, Chen J, Liang T, Yang L. Novel high step up DC-DC converter with coupled inductor and switched capacitor techniques for a sustainable energy system. IEEE Trans Power Electron 2011;26:3481–90.CrossrefGoogle Scholar

  • 5.

    Axelrod B, Berkocivh Y, Shenkman A, Golan G. Diode capacitor voltage multipliers combined with boost converters: topologies and characteristics. IET Power Electron 2012;5:873–84.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Tan SC, Lai Y, Tse C. Sliding mode control of switching power converters techniques and implementation, 1st ed. Boca Raton, FL: CRC, 2012.Google Scholar

  • 7.

    Bianconi E, Calvente J, Mamarelis E, Petrone G, Paja CAR, Spagnolo G, et al. Perturb and observe MPPT algorithm with a current controller based on the sliding mode. Int J Elect Power Energy Syst 2013;44:346–56.Web of ScienceCrossrefGoogle Scholar

  • 8.

    Bianconi E, Calvente J, Giral R, Mamarelis E, Petrone G, Paja CAR, et al. A fast current based MPPT technique employing sliding mode control. IEEE Trans Ind Electron 2013;60:1168–78.CrossrefWeb of ScienceGoogle Scholar

  • 9.

    Levron Y, Shmilovitz D. Maximum power point tracking employing sliding mode control. IEEE Trans Circuits Syst 2013;60:724–32.CrossrefGoogle Scholar

  • 10.

    Afghoul H, Chikouche D, Krim F, Beddar A A novel implementation of MPPT sliding mode controller for PV generation systems Eurocon’13, 789–794, July 2013.PubMedGoogle Scholar

  • 11.

    Chu C, Chen C. Robust maximum power point tracking method for photovoltaic cells: A sliding mode control approach. Solar Energy 2009;83:1370–8.CrossrefWeb of ScienceGoogle Scholar

  • 12.

    Pradhan R, Subudhi B. Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans Control Syst Tech. 10.1109/TCST.2015.2420674.

  • 13.

    Inthamoussou F, Battista HD, Cendoya M, Low cost sliding mode power controller of a standalone photovoltaic module. IEEE Conf ICIT’10, 2010:1175–1180.Google Scholar

  • 14.

    Levron Y, Shmilovitz D, Sliding mode control of photovoltaic module integrated buck boost converters, EPE-PEMC’12, 2012:1–6.Google Scholar

  • 15.

    Subudhi B, Pradhan R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 2013;4:89–98.CrossrefGoogle Scholar

  • 16.

    Azevedo GMS, Cavalcanti MC, Oliveira KC, Neves FAS, Lins ZD. Comparative evaluation of maximum power point tracking methods for photovoltaic system. J Sol Energy Eng 2009;131:1–8.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Latham AM, Podgurski RP, Odame KM, Sullivan CR. Analysis and optimization of maximum power point tracking algorithms in the presence of noise. IEEE Trans Power Electron 2013;28:3479–94.CrossrefGoogle Scholar

  • 18.

    Brito MAG, Galotto L, Sampaio LP, Melo GA, Canesin CA. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Ind Electron 2013;60:1156–67.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Houssamo I, Locment F, Sechilariu M. Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms. Renew Energ 2010;35:2381–7.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Zhang L, Hurley WG, Wolfle WH. A new approach to achieve maximum power point tracking for PV system with a variable inductor. IEEE Trans Power Electron 2011;26:1031–7.CrossrefGoogle Scholar

  • 21.

    Pradhan R, Subudhi B, Ray PK A real time linearized maximum power point tracker for photovoltaic system PEDS’13, 962–967, April 2013, Japan.Google Scholar

  • 22.

    Ren W, Sloderbeck M, Steurer M, Dinavahi V, Noda T, Filizadeh S, et al. Interfacing issues in real time digital simulators. IEEE Trans Power Delivery 2011;26:1221–30.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Park M, Yu I. A novel real time simulation technique of photovoltaic generation systems using RTDS. IEEE Trans Energy Conver 2004;19:164–9.CrossrefGoogle Scholar

  • 24.

    Pradhan R, Subudhi B. Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system. Int J Elect Power Energy Syst (Elsevier) 2015;64:792–803.CrossrefGoogle Scholar

About the article

Published Online: 2015-06-25

Published in Print: 2015-08-01

Citation Information: International Journal of Emerging Electric Power Systems, Volume 16, Issue 4, Pages 313–322, ISSN (Online) 1553-779X, ISSN (Print) 2194-5756, DOI: https://doi.org/10.1515/ijeeps-2015-0010.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in