Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Emerging Electric Power Systems

Editor-in-Chief: Sidhu, Tarlochan

Ed. by Khaparde, S A / Rosolowski, Eugeniusz / Saha, Tapan K / Gao, Fei

6 Issues per year

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.186
Source Normalized Impact per Paper (SNIP) 2017: 0.248

See all formats and pricing
More options …
Volume 19, Issue 1


Mathematical Model of Multi-Phase Power Converter for Parallel Computation

Vladimir Belov / Peter Leisner / Anders Mannikoff / Ilja Belov
Published Online: 2018-02-03 | DOI: https://doi.org/10.1515/ijeeps-2017-0114


Abstract — A mathematical model of a multi-phase power conversion system composed of modified bridge-elements (B-system) capable for parallel computation has been developed. Experimental validation on the example of a power system including a synchronous generator and an AC-DC rectifier has been performed. A mathematical algorithm for B-system assembly and steps to obtain mathematical model of the B-system have been developed. Integration of mathematical models of conversion system into the complete model of a multi-phase power system has been explained and evaluation of computational efficiency of parallel computation techniques for the developed model of an AC-DC-AC converter has been performed. The presented modelling method can be employed in the design phase of smart grids, for power quality and conducted emission analysis.

Keywords: power system; power converter; rectifier; mathematical model; power quality; parallel computation


  • [1]

    Nagaraj V, Asmus P, Energy micro grids growing globally, Electric Energy T&D Magazine, Jul.-Aug. 2012: 38–40.Google Scholar

  • [2]

    Blaabjerg F, Ionel DM. Renewable energy devices and systems – state-of-the-art technology, research and development, challenges and future trends. Electr Power Compon Syst. 2015;43(12):1319–28.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    Open Smart Grid Protocol (OSGP), ETSI GS OSG 001 V1.1.1 (2012-01), 2012.Google Scholar

  • [4]

    Kraus R, Turkes P, Sigg J, Physics-based models of power semiconductor devices for the circuit simulator SPICE, Record. 29th Annual IEEE PESC 98 (Vol. 2), 17–22 May 1998: 1726–31.Google Scholar

  • [5]

    Ammous A, Ammous K, Ayedi M, Sellami F. An advanced PWM-Switch Model including semiconductor device nonlinearities. IEEE Trans Power Electron. 2003;18(5):1230–37CrossrefGoogle Scholar

  • [6]

    Liqiang Y, Zhengming Z, Hua B, Chongjian L, Yaohua L, The IGCT test platform for voltage source inverters. In: Proc. of 5th International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003 (Vol.2), 17–20 Nov. 2003: 1291–94.Google Scholar

  • [7]

    Maksimovic D, Stankovic AM, Thottuvelil VJ, Verghese GC. Modeling and simulation of power electronic converters. Proc IEEE. 2001;89(6):898–912.CrossrefGoogle Scholar

  • [8]

    Luo Y, Dougal R, Santi E, Multi-resolution modeling of power converter using waveform reconstruction. In: Proc. of 33rd Annual Simulation Symposium, 2000 (SS 2000), 16–20 Apr 2000: 165–74.Google Scholar

  • [9]

    Fankhauser HR, Aneros K, Edris -A-A, Torseng S. Advanced simulation techniques for the analysis of power system dynamics. IEEE Comput Appl Power. 1990;3(4):31–36.CrossrefGoogle Scholar

  • [10]

    Watson N, Arrillaga J. Harmonic assessment using electromagnetic transient simulation and frequency-dependent network equivalents. IEE Proc. On Generation, Transmission and Distribution. 2003;150(6):641–50.CrossrefGoogle Scholar

  • [11]

    Xiong X, Ouyang J. Modeling and transient behavior analysis of an Inverter-based microgrid. Electric Power Compon Syst. 2011;40(1):112–30.Web of ScienceCrossrefGoogle Scholar

  • [12]

    Yang T, Bozhko S, Le-Peuvedic JM, Asher G, Hill CI. Dynamic phasor modeling of multi-generator variable frequency electrical power systems. IEEE Trans Power Syst. 2016 Jan;31(1):563–71.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    Raghuwanshi SS, Singh A, Mokhariwale Y. A Comparison & performance of simulation tools MATLAB/SIMULINK, PSIM & PSPICE for power electronics circuits. Int J Advanced Res Comput Sci Software Eng. 2012;2(3):187–91.Google Scholar

  • [14]

    Mendoza-Araya PA, Venkataramanan G. Stability analysis of AC microgrids using incremental phasor impedance matching. Electric Power Compon Syst. 2015;43(4):473–84.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    Belov V, Belov I, Nemoykin V, Johansson A, Leisner P, Computer modelling and analysis of EMC in a multi-phase electrical system. In: Proc. of 3rd Nat. conference EMB04, Göteborg, Sweden, 2004: 294–301.Google Scholar

  • [16]

    Belov V, Paldyaev N, Shamaev A, Johansson A, Leisner P, Belov I, A Complete mathematical model of an independent multi-phase power supply system based on multi-phase bridge-element concept. WSEAS Trans. on Circuits and Systems. 2005;4:1009–18.Google Scholar

  • [17]

    Belov V, Leisner P, Johansson A, Paldyaev N, Shamaev A, Belov I. Mathematical modelling of a wind power system with an integrated active filter. J Electric Power Syst Res. 2009;79(1):117–25.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Generator type ECO 3-2S/4. Datasheet DS041A/1 issue 003, 22/01/2004. www.elektromotoren.at. Access 08 March 2017.

  • [19]

    Pacheco PS. Parallel programming with MPI. San Francisco, California: Morgan Kaufmann, 1997.Google Scholar

  • [20]

    The OpenMP® API specification for parallel programming, http://openmp.org. Access 05 February 2017.

  • [21]

    Liu C, Wu H, Feng L, Yang A. Parallel fourth-order Runge-Kutta method to solve differential equations In: Proc. of 2nd Int. Conf. on Information Computing and Applications (ICICA 2011), Qinhuangdao, China, October 28–31, 2011: 192–99.Google Scholar

  • [22]

    Korch M, Rauber T. Comparison of parallel implementations of Runge-Kutta solvers: message passing vs. threads. In: Joubert GR, Nagel WE, Peters FJ, Walter WV, editor(s). Parallel Computing Software Technology, Algorithms, Architectures and Applications. Advances in Parallel Computing. Vol. 13, 2004:209–16.Google Scholar

  • [23]

    Van Der Houwen PJ, Sommeijer BP. Parallel iteration of high-order Runge-Kutta methods with stepsize control. J Comput Appl Math. 1990;29(1): 111–27. ISSN 0377-0427.CrossrefGoogle Scholar

About the article

Received: 2017-06-11

Accepted: 2018-01-13

Published Online: 2018-02-03

Citation Information: International Journal of Emerging Electric Power Systems, Volume 19, Issue 1, 20170114, ISSN (Online) 1553-779X, DOI: https://doi.org/10.1515/ijeeps-2017-0114.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in