Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Food Engineering

Editor-in-Chief: Chen, Xiao Dong


IMPACT FACTOR 2017: 0.923

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.350
Source Normalized Impact per Paper (SNIP) 2018: 0.467

Online
ISSN
1556-3758
See all formats and pricing
More options …
Volume 11, Issue 3

Issues

Microwave-Assisted Extraction of Phenolic Compounds from Dried Waste Grape Skins

Miguel A. Pedroza
  • Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Av España s/n, 02071 Albacete, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Danila Amendola
  • Istituto di Enologia e Ingegneria Agro-Alimentare, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luana Maggi
  • Istituto di Enologia e Ingegneria Agro-Alimentare, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amaya Zalacain
  • Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Av España s/n, 02071 Albacete, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dante M. De Faveri
  • Istituto di Enologia e Ingegneria Agro-Alimentare, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giorgia Spigno
  • Corresponding author
  • Istituto di Enologia e Ingegneria Agro-Alimentare, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-11 | DOI: https://doi.org/10.1515/ijfe-2015-0009

Abstract

Microwave-assisted extraction (MAE) was investigated for recovering of total phenolic compounds from dried waste grape skins using a domestic microwave oven. Influence of vessel geometry, irradiation cycles, irradiation power and time was investigated. The results in terms of phenolics yield, antioxidant capacity and energy consumption were compared with a reference solid–liquid extraction (SLE) carried out for 2 h at 60°C. Equivalent yield of total phenolics as in SLE was achieved with a MAE extraction time of 1,033 sec (corresponding to 83 sec of irradiation at 900 W, 83% saving in extraction time compared to SLE and with a 70% energetic efficiency). Pre-maceration of samples and solvent pre-heating are proposed for large-scale industrial processes to enhance phenolics extraction and process efficiency.

Keywords: winemaking by-products; extraction; grape skins; microwave (domestic type); phenolics

References

  • 1.

    Bustamante MA, Moral R, Paredes C, Pérez-Espinosa A, Moreno-Caselles J, Pérez-Murcia MD. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manage 2008;28:372–80.Web of ScienceGoogle Scholar

  • 2.

    Devesa-Rey R, Vecino X, Varela-Alende JL, Barral MT, Cruz JM, Moldes AB. Valorization of winery waste vs. the costs of not recycling. Waste Manage 2011;31:2327–35.Web of ScienceGoogle Scholar

  • 3.

    Amendola D, De Faveri DM, Spigno G. Grape marc phenolics: extraction kinetics, quality and stability of extracts. J Food Eng 2010;97:384–92.Google Scholar

  • 4.

    Arvanitoyannis IS, Ladas D, Mavromatis A. Potential uses and applications of treated wine waste: a review. Int J Food Sci Technol 2006;41:475–87.Google Scholar

  • 5.

    Pedroza MA, Carmona M, Salinas MR, Zalacain A. Use of dehydrated waste grape skins as a natural additive for producing rosé wines: study of extraction conditions and evolution. J Agric Food Chem 2011;59:10976–86.PubMedWeb of ScienceGoogle Scholar

  • 6.

    Pedroza MA, Carmona M, Alonso GL, Salinas MR, Zalacain A. Pre-bottling use of dehydrated waste grape skins to improve colour, phenolic and aroma composition of red wines. Food Chem 2013;136:224–36.Web of SciencePubMedGoogle Scholar

  • 7.

    Boo H-O, Hwang S-J, Bae C-S, Park S-H, Heo B-G, Gorinstein S. Extraction and characterization of some natural plant pigments. Ind Crops Prod 2012;40:129–35.Web of ScienceGoogle Scholar

  • 8.

    Han J, Britten M, St-Gelais D, Champagne CP, Fustier P, Salmieri S, et al. Polyphenolic compounds as functional ingredients in cheese. Food Chem 2011;124:1589–94.Web of ScienceGoogle Scholar

  • 9.

    Mildner-Szkudlarz S, Zawirska-Wojtasiak R, Gośliński M. Phenolic compounds from winemaking waste and its antioxidant activity towards oxidation of rapeseed oil. Int J Food Sci Technol 2010;45:2272–80.Google Scholar

  • 10.

    Sagdic O, Ozturk I, Ozkan G, Yetim H, Ekici L, Yilmaz MT. RP-HPLC-DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chem 2011;126:1749–58.PubMedWeb of ScienceGoogle Scholar

  • 11.

    Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol 2013;48:221–37.Google Scholar

  • 12.

    Chan CH, Yusoff R, Ngoh GC, Kung FWL. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 2011;1218:6213–25.PubMedGoogle Scholar

  • 13.

    Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG. Microwave assisted extraction of anthocyanins from grape skins. Food Chem 2011;124:1238–43.Google Scholar

  • 14.

    Li Y, Skouroumounis GK, Elsey GM, Taylor DK. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem 2011;129:570–6.Google Scholar

  • 15.

    Spigno G, De Faveri DM. Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng 2009;93:210–7.Google Scholar

  • 16.

    Ghassempour A, Heydari R, Talebpour Z, Fakhari AR, Rassouli A, Davies N, et al. Study of new extraction methods for separation of anthocyanins from red grape skins: analysis by HPLC and LC-MS/MS. J Liq Chromatogr R T 2008;31:2686–703.Web of ScienceGoogle Scholar

  • 17.

    Li DC, Jiang JG. Optimization of the microwave-assisted extraction conditions of tea polyphenols from green tea. Int J Food Sci Nutr 2010;61:837–45.PubMedWeb of ScienceGoogle Scholar

  • 18.

    Pinelo M, Arnous A, Meyer AS. Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 2006;17:579–90.Google Scholar

  • 19.

    Casazza AA, Aliakbarian B, Mantegna S, Cravotto G, Perego P. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J Food Eng 2010;100:50–5.Google Scholar

  • 20.

    Li Y, Han L, Ma R, Xu X, Zhao C, Wang Z, et al. Effect of energy density and citric acid concentration on anthocyanins yield and solution temperature of grape peel in microwave-assisted extraction process. J Food Eng 2012;109:274–80.Google Scholar

  • 21.

    Li H, Deng Z, Wu T, Liu R, Loewen S, Tsao R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 2012;130:928–36.Google Scholar

  • 22.

    González-Nuñez LN, Cañizares-Macías MP. Focused microwaves-assisted extraction of theobromine and caffeine from cacao. Food Chem 2011;129:1819–24.Google Scholar

  • 23.

    Upadhyay R, Ramalakshmi K, Jagan Mohan Rao L. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem 2012;130:184–8.Google Scholar

  • 24.

    Zhang Z, Lv G, Pan H, Fan L. Optimisation of the microwave-assisted extraction process for six phenolic compounds in Agaricus blazei Murrill. Int J Food Sci Technol 2012;47:24–31.Google Scholar

  • 25.

    Song J, Li D, Liu C, Zhang Y. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov Food Sci Emerg Tech 2011;12:282–7.Google Scholar

  • 26.

    Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ. Assisted extraction of rosemary antioxidants with green solvents. J Food Eng 2012;109:98–103.Google Scholar

  • 27.

    Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem 2011;133:1292–8.Google Scholar

  • 28.

    Spigno G, Tramelli L, De Faveri DM. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 2007;81:200–8.Google Scholar

  • 29.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231–7.PubMedGoogle Scholar

  • 30.

    Kappe CO, Pieber B, Dallinger D. Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 2013;52:1088–94.Google Scholar

  • 31.

    Horikoshi S, Abe M, Serpone N. Influence of alcoholic and carbonyl functions in microwave-assisted and photo-assisted oxidative mineralization. Appl Catal B 2009;89:284–7.Web of ScienceGoogle Scholar

  • 32.

    Dahmoune F, Boulekbache L, Moussi K, Aoun O, Spigno G, Madani K. Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind Crops Prod 2013;50:77–87.Web of ScienceGoogle Scholar

  • 33.

    Spigno G, De Faveri DM. Antioxidants from grape stalks and marc: influence of extraction procedure on yield, purity and antioxidant power of the extracts. J Food Eng 2007;78:793–801.Google Scholar

  • 34.

    Pueschner. Dielectric heating with microwave energy. Available at http://www.pueschner.com. Accessed 2013.

  • 35.

    Perry RH, Green DW. Perry’s chemical engineers’ handbook, 7th ed. Australia: McGraw-Hill, 1998.Google Scholar

  • 36.

    Nguyen LT, Choi W, Lee SH, Jun S. Exploring the heating patterns of multiphase foods in a continuous flow, simultaneous microwave and ohmic combination heater. J Food Eng 2013;116:65–71.Web of ScienceGoogle Scholar

  • 37.

    Clodoveo ML, Hbaieb RH. Beyond the traditional virgin olive oil extraction systems: searching innovative and sustainable plant engineering solutions. Food Res Int 2013;54:1926–33.Web of ScienceGoogle Scholar

  • 38.

    Zhang HF, Yang XH, Wang Y. Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 2011;22:672–88.Web of ScienceGoogle Scholar

About the article

Published Online: 2015-04-11

Published in Print: 2015-06-01


Funding: This work received funding from Progetto Ager (grant no 2010–2222). M.A.P. is grateful for the CONACYT fellowship (207976) received from the Mexican government.


Citation Information: International Journal of Food Engineering, Volume 11, Issue 3, Pages 359–370, ISSN (Online) 1556-3758, ISSN (Print) 2194-5764, DOI: https://doi.org/10.1515/ijfe-2015-0009.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Silvia Mironeasa, Mădălina Iuga, Dumitru Zaharia, and Costel Mironeasa
Food and Bioprocess Technology, 2019, Volume 12, Number 2, Page 228
[2]
Álvaro Silva Lima, Cleide Mara Faria Soares, Renate Paltram, Heidi Halbwirth, and Katharina Bica
Fluid Phase Equilibria, 2017, Volume 451, Page 68
[3]
Igor Trujillo‐Mayol, Carlos Céspedes‐Acuña, Fabiana L. Silva, and Julio Alarcón‐Enos
Journal of Food Process Engineering, 2019
[4]
Ali Ghasemzadeh, Ali Baghdadi, Hawa Z. E. Jaafar, Mallappa Swamy, and Puteri Megat Wahab
Molecules, 2018, Volume 23, Number 8, Page 1863
[5]
Predrag Putnik, Danijela Bursać Kovačević, Damir Ježek, Ivana Šustić, Zoran Zorić, and Verica Dragović-Uzelac
Journal of Food Processing and Preservation, 2017, Page e13342

Comments (0)

Please log in or register to comment.
Log in