Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Food Engineering

Editor-in-Chief: Chen, Xiao Dong


IMPACT FACTOR 2017: 0.923

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.350
Source Normalized Impact per Paper (SNIP) 2018: 0.467

Online
ISSN
1556-3758
See all formats and pricing
More options …
Volume 11, Issue 4

Issues

Mathematical Modeling of Hot-Air Drying of Osmo-dehydrated Nectarines

M. Marcela Rodríguez
  • TECSE – Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, C.P. B7400JWI, Olavarría, Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rodolfo H. Mascheroni
  • CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) (CONICET La Plata – UNLP), La Plata, Argentina
  • MODIAL, Facultad de Ingeniería UNLP, La Plata, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Armando Quintero-Ramos
  • Corresponding author
  • Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua Circuito Universitario s/n. Campus # 2, Chihuahua City, Chihuahua C.P. 31125, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-20 | DOI: https://doi.org/10.1515/ijfe-2014-0329

Abstract

The influence of osmotic pretreatment on nectarines with solutions of glucose syrup and sorbitol and subsequent dehydration at different temperatures (60 °C, 70 °C, or 80 °C) was evaluated. The kinetics of moisture loss during drying was obtained and mathematical models were adjusted to estimate the kinetic parameters. Effective diffusion coefficients were calculated using Fick’s second law. All drying kinetics exhibited only a falling-rate period during hot-air drying owing to moisture loss in the osmotic pretreatment. Moisture loss was favoured by the use of sorbitol, whereas the diffusivity of water increased when glucose was used as an osmotic agent. Logarithmic and Midilli et al. models best described the changes in moisture over time, whereas Fick’s second law estimated water diffusion coefficient values between 4.96×10−9 and 2.43×10−8 m2 s−1. These models may be employed to predict the optimum conditions for osmo-dehydrating nectarines under hot-air drying at the industrial level.

Keywords: drying kinetics; mathematical modeling; osmotic dehydration; diffusion coefficients; nectarines

References

  • 1.

    Franklin M, Bu SY, Lerner MR, Lancaster EA, Bellmer D, Marlow D, et al. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone 2006;39:1331–42.CrossrefGoogle Scholar

  • 2.

    Tarhan S. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures. J Food Eng 2007;79:255–60.CrossrefGoogle Scholar

  • 3.

    Goncalves B, Silva AP, Moutinho Pereira J, Bacelar E, Rosa E, Meyer AS. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chem 2007;103:976–84.CrossrefGoogle Scholar

  • 4.

    De Michelis A, Pirone BN, Vullioud MB, Ochoa MR, Kesseler AG, Márquez CA Cambios de volumen, área superficial y factor de forma de heywood durante la deshidratación de cerezas (Prunus avium). Ciênc Tecnol Aliment Campinas 2008;28:317–21.CrossrefGoogle Scholar

  • 5.

    Gil MI, Tomas Barberan FA, Hess-Pierce B, Kader AA. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem 2002;50:4976–82.CrossrefPubMedGoogle Scholar

  • 6.

    Khoyi MR, Hesari J. Osmotic dehydration kinetics of apricot using sucrose solution. J Food Eng 2007;78:1355–60.CrossrefGoogle Scholar

  • 7.

    Ispir A, Togrul IT. Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chem Eng Res Design 2009;87:166–80.CrossrefGoogle Scholar

  • 8.

    Araujo EA, Ribeiro SC, Moreira Azoubel PM, Murr FE. Drying kinetics of nectarine (Prunus persica) with and without shrinkage. In: Proceedings of the 14th International Drying Symposium (IDS 2004), 22–25 August 2004, São Paulo, Brazil, C, 2189–94.Google Scholar

  • 9.

    Pavkov I, Babić LJ, Babić M, Radojčin M, Stojanović Č. Effects of osmotic pre-treatment on convective drying kinetics of nectarines halves (Pyrus persica L). J Process Energy Agric 2011;15:217–22.Google Scholar

  • 10.

    Rodríguez MM, Arballo JR, Campañone LA, Cocconi MB, Pagano AM, Mascheroni RH. Osmotic dehydration of nectarines: influence of the operating conditions and determination of the effective diffusion coefficients. Food Bioprocess Technol 2013;6:2708–20.CrossrefGoogle Scholar

  • 11.

    Menges HO, Ertekin C. Mathematical modelling of thin layer drying of golden apples. J Food Eng 2006;77:119–25.CrossrefGoogle Scholar

  • 12.

    Sacilik K, Elicin AK. The thin layer drying characteristics of organic apple slices. J Food Eng 2006;73:281–9.CrossrefGoogle Scholar

  • 13.

    Vega A, Fito P, Andrés A, Lemus R. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng 2007;79:1460–6.CrossrefGoogle Scholar

  • 14.

    Togrul IT. Modelling of heat and moisture transport during drying black grapes. Int J Food Sci Technol 2010;45:1146–52.CrossrefGoogle Scholar

  • 15.

    Treybal RE. Operaciones de transferencia de masa, Cap. 12 Secado. Universidad de Rhode Island, México, 2da ed.: McGraw Hill, 1995.Google Scholar

  • 16.

    Geankoplis CJ. Procesos de transporte y operaciones unitarias, Cap. 9 Secado de materiales de proceso, Universidad de Minnesota, México, 3ra ed., Compañía Editorial Continental, S. A. de C. V. México 1998.Google Scholar

  • 17.

    Van Arsel WB, Copley MJ, Morgan AI. Food dehydration, 2nd ed, vol. 1. Westport: Principles, AVI, 1973.Google Scholar

  • 18.

    Sanjuán N, Lozano M, García-Pascual P, Mulet A. Dehydration kinetics of red pepper (Capsicum annuum L var jaranda). J Sci Food Agric 2003;83:697–701.CrossrefGoogle Scholar

  • 19.

    Üretir G, Özilgen M, Katnas S. Effects of velocity and temperature of air on the drying rate constants of apple cubes. J Food Eng 1996;30:339–50.CrossrefGoogle Scholar

  • 20.

    Simal S, Deyá E, Frau M, Roselló C. Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apples cubes. J Food Eng 1997;33:139–50.CrossrefGoogle Scholar

  • 21.

    Fito P, Andrés AM, Barat JM, Albors AM. Introducción al secado de alimentos por aire caliente. España, Ed. Universidad Politécnica de Valencia, 2001.Google Scholar

  • 22.

    Keqing DX. Optimización del secado por aire caliente de pera (Variedad Blanquilla). Tesis doctoral, Universidad Politécnica de Valencia, España, 2004.Google Scholar

  • 23.

    Curcio SA. Multiphase model to analyze transport phenomena in food drying processes. Drying Technol 2010;28:773–85.CrossrefGoogle Scholar

  • 24.

    Chua KJ, Mujumdar AS, Hawlader MN, Chou SK, Ho JC. Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Res Int 2001;34:721–31.CrossrefGoogle Scholar

  • 25.

    Dandamrongrak R, Young G, Mason R. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. J Food Eng 2002;55:139–46.CrossrefGoogle Scholar

  • 26.

    Fernandes FA, Rodrigues S, Gaspareto OC, Oliveira EL. Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng 2006;77:188–93.CrossrefGoogle Scholar

  • 27

    Riva M, Campolongo S, Leva AA, Maestrelli A, Torreggiani D. Structure–property relationships in osmo-air-dehydrated apricot cubes. Food Res Int 2008;38:533–42.CrossrefGoogle Scholar

  • 28.

    Mudahar GS, Buhr RJ, Jen JJ. Infiltrated biopolymers effect on quality of dehydrated carrots. J Food Sci 1991;57:526–9.CrossrefGoogle Scholar

  • 29.

    Ozen BF, Dock LL, Ozdemir M, Floros JD. Processing factors affecting the osmotic dehydration of diced green peppers. Int J Food Sci Technol 2002;37:497–502.CrossrefGoogle Scholar

  • 30.

    Quintero-Chávez R, Quintero-Ramos A, Jiménez-Castro J, Barnard J, Márquez-Meléndez R, Zazueta-Morales J, et al. Modeling of total soluble solid and NaCl uptake during osmotic treatment of bell peppers under different infusion pressures. Food Bioprocess Technol 2012;5:184–92.CrossrefGoogle Scholar

  • 31.

    Mandala IG, Anagnostaras EF, Oikonomou CK. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J Food Eng 2005;69:307–16.CrossrefGoogle Scholar

  • 32.

    Simal S, Femenia A, Garau MC, Roselló C. Use of exponential models to simulate the drying kinetics of kiwi fruit. J Food Eng 2005;66:323–8.CrossrefGoogle Scholar

  • 33.

    Rodrigues S, Fernandes FAN. Osmotic dehydration of melon in a ternary system followed by air drying. In 15th International Drying Symposium (IDS 2006), Budapest, Hungary, 20–23 August 2006.Google Scholar

  • 34.

    Lombard GE, Oliveira JC, Fito P, Andrés A. Osmotic dehydration of pineapple as a pre-treatment for further drying. J Food Eng 2008;85:277–84.CrossrefGoogle Scholar

  • 35.

    Kaleta A, Górnicki K. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int J Food Sci Technol 2010;45:891–8.CrossrefGoogle Scholar

  • 36.

    Monnerat SM, Pizzi RM, Mauro TMA, Menegalli FC. Osmotic dehydration of apples in sugar/salt solutions: concentration profiles and effective diffusion coefficients. J Food Eng 2010;100:604–12.CrossrefGoogle Scholar

  • 37.

    Wang Z, Sun J, Liao X, Chen F, Zhao G, Wu J, et al. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res Int 2007;40:39–46.CrossrefGoogle Scholar

  • 38.

    Sander A, Prlíc Kardum J, Glasnovíc A. Drying of solids: estimation of the mathematical model parameter. Can J Chem Eng 2010;88:822–9.Google Scholar

  • 39.

    Crank J. The mathematics of diffusion, 2nd ed. Oxford: Oxford University Press, 1975:47–9.Google Scholar

  • 40.

    Akbulut A, Durmus A. Thin layer solar drying and mathematical modeling of mulberry. Int J Energy Res 2009;33:687–95.CrossrefGoogle Scholar

  • 41.

    AOAC. Official methods of analysis. Washington, DC: Association of Official Analytical Chemists, 1980.Google Scholar

  • 42.

    Barbosa-Cánovas GV, Vega-Mercado H. Deshidratación de Alimentos. Zaragoza, España: Ed. ACRIBIA S.A., 2000.Google Scholar

  • 43.

    Cheftel JC, Cheftel H. Introducción a la bioquímica y tecnología de los alimentos. Zaragoza, España: Ed. ACRIBIA S.A, 1992.Google Scholar

  • 44.

    Mazza G, Lemaguer M. Dehydration of onion: some theoretical and practical considerations. J Food Technol 1980;15:181–94.CrossrefGoogle Scholar

  • 45.

    McMinn WA, McLoughlin CM, Magee TR. Thin-layer modeling of microwave, microwave-connective and microwave-vacuum drying of pharmaceutical powders. Drying Technol 2005;23:513–32.CrossrefGoogle Scholar

  • 46.

    Ghazanfari A, Emami S, Tabil LG, Panigrahi S. Thin-layer drying of flax fiber: II. Modeling drying process using semi-theoretical and empirical models. Drying Technol 2006;24:1637–42.CrossrefGoogle Scholar

  • 47.

    López R, De Ita A, Vaca M. Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Convers Manage 2009;50:2119–26.CrossrefGoogle Scholar

  • 48.

    Yaldiz O, Ertekin C. Thin-layer solar drying of some vegetables. Drying Technol 2001;19:583–97.CrossrefGoogle Scholar

  • 49.

    Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Drying Technol 2002;20:1503–13.CrossrefGoogle Scholar

  • 50.

    Wilkinson L. SYSTAT: The System for Statistics: Statistics, Evanston: SYSTAT 2007, Inc. version No. 12.02.00, 1990.Google Scholar

  • 51.

    Doymaz I. Effect of dipping treatment on air drying of plums. J Food Eng 2004;64:465–70.CrossrefGoogle Scholar

  • 52.

    Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat, versión 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Google Scholar

  • 53.

    Ferrari CC, Arballo JR, Mascheroni RH. Mass transfer and texture variation during osmotic dehydration of pears. In: Proceedings of 4th Inter-American Drying Conference, 2009; IV-17:610–616.Google Scholar

  • 54.

    Raoult-Wack AL, Guilbert S, Le Maguer M, Ríos G. Simultaneous water and solute transport in shrinking media –part 1. Application to dewatering and impregnation soaking process analysis (osmotic dehydration). Drying Technol 1991;9:589–612.CrossrefGoogle Scholar

  • 55.

    Cháfer M, González-Martínez C, Ortolá MD, Chiralt A, Fito P. Kinetics of osmotic dehydration in orange and mandarin peels. J Food Process Eng 2001;24:273–89.CrossrefGoogle Scholar

  • 56.

    Emam-Djomeh Z, Djelveh G, Gros JB. Osmotic dehydration of foods in a multicomponent solution parte I. Lowering of solute uptake in agar gel: diffusion considerations. Food Sci Technol 2001;34:312–18.Google Scholar

  • 57.

    Moreira Azoubel P, Murr FE. Mass transfer kinetics of osmotic dehydration of cherry tomato. J Food Eng 2004;61:291–5.CrossrefGoogle Scholar

  • 58.

    Antonio GC, Kurozawa LE, Xidieh Murr FE, Park KJ. Otimização da desidratação osmótica de batata doce (Ipomoea batatas) utilizando metodologia de superfície de resposta. Braz J Food Technol 2006;9:135–41.Google Scholar

  • 59.

    Borin I, Frascareli EC, Mauro MA, Kimura M. Efeito do prétratamento osmótico com sacarose e cloreto de sódio sobre a secagem convectiva de abóbora. Ciênc Tecnol Aliment 2008;28:39–50.CrossrefGoogle Scholar

  • 60.

    Akpinar EK, Bicer Y, Yildiz C. Thin layer drying of red pepper. J Food Eng 2003;59:99–104.CrossrefGoogle Scholar

  • 61.

    Akpinar EK, Sarsılmaz C, Yildiz C. Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. Int J Energy Res 2004;28:739–52.CrossrefGoogle Scholar

  • 62.

    Lahsasni S, Kouhila M, Mahrouz M, Ait Mohamed L, Agorram B. Characteristic drying curve and mathematical modeling of thin layer solar drying of prickly pear cladode (Opuntia ficus indica). J Food Process Eng 2004;27:103–17.CrossrefGoogle Scholar

  • 63.

    Barat JM, Chiralt A, Fito P. Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Sci Technol Int 2001;7:451–6.CrossrefGoogle Scholar

  • 64.

    Senadeera W, Bhandari BR, Young G, Wijesinghe B. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J Food Eng 2003;58:277–83.CrossrefGoogle Scholar

  • 65.

    Sankat CK, Castaigne F. Foaming and drying behaviour of ripe bananas. Lebensmittel-Wissenschaft Und-Technologie 2004;37:17–525.Google Scholar

  • 66.

    Doymaz I. Drying characteristics and kinetics of okra. J Food Eng 2005;69:275–9.CrossrefGoogle Scholar

  • 67.

    Riva M, Campolongo S, Leva AA, Maestrelli A, Torreggiani D. Structure-property relationships in osmo-air-dehydrated apricot cubes. Food Res Int 2005;38:533–42.CrossrefGoogle Scholar

  • 68.

    Wang J, Xi YS. Drying characteristics and drying quality of carrot using a two-stage microwave process. J Food Eng 2005;68:505–11.CrossrefGoogle Scholar

  • 69.

    Maskan A, Kaya S, Maskan M. Hot air and sun drying of grape leather (pestil). J Food Eng 2002;54:81–8.CrossrefGoogle Scholar

  • 70.

    Akpinar E, Midilli A, Bicer Y. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers Manage 2003;44:1689–705.CrossrefGoogle Scholar

  • 71.

    Velic D, Planinic M, Tomas S, Belic M. Influence of airflow velocity on kinetics of convection apple drying. J Food Eng 2004;64:97–102.CrossrefGoogle Scholar

  • 72.

    Rayaguru K, Routray W, Mohanty SN. Mathematical modeling and quality parameters of air-dried betel leaf (Piper beatle L). J Food Process Preserv 2010;35:272–9.Google Scholar

About the article

Published Online: 2015-06-20

Published in Print: 2015-08-01


Citation Information: International Journal of Food Engineering, Volume 11, Issue 4, Pages 533–545, ISSN (Online) 1556-3758, ISSN (Print) 2194-5764, DOI: https://doi.org/10.1515/ijfe-2014-0329.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mohammad Kaveh, Reza Amiri Chayjan, and Behrooz Khezri
International Journal of Food Engineering, 2018, Volume 14, Number 1
[2]
Joanna Cichowska, Adam Figiel, Lidia Stasiak-Różańska, and Dorota Witrowa-Rajchert
Foods, 2019, Volume 8, Number 1, Page 20
[3]
Mohammad Kaveh, Ahmad Jahanbakhshi, Yousef Abbaspour-Gilandeh, Ebrahim Taghinezhad, and Mohammad Bagher Farshbaf Moghimi
Journal of Food Process Engineering, 2018, Page e12868
[4]
Joanna Cichowska, Joanna Żubernik, Jakub Czyżewski, Hanna Kowalska, and Dorota Witrowa-Rajchert
Molecules, 2018, Volume 23, Number 2, Page 446

Comments (0)

Please log in or register to comment.
Log in