Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Food Engineering

Editor-in-Chief: Chen, Xiao Dong


IMPACT FACTOR 2017: 0.923

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.350
Source Normalized Impact per Paper (SNIP) 2018: 0.467

Online
ISSN
1556-3758
See all formats and pricing
More options …
Volume 15, Issue 1-2

Issues

Mechanical Properties of Hulless Barley Stem with Different Moisture Contents

Jia-hui Chen
  • Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nan Zhao
  • Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nan Fu / Dong Li
  • Corresponding author
  • Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, 100083, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Li-jun Wang
  • Corresponding author
  • College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiao Dong Chen
Published Online: 2019-01-16 | DOI: https://doi.org/10.1515/ijfe-2018-0033

Abstract

Mechanical properties of hulless barley stems with different moisture contents (10.23%–43.14%) were investigated by using temperature sweep, frequency sweep, stress relaxation and creep tests of dynamic mechanical analyzer (DMA) in this study. Results showed a significant dependence of storage modulus, loss modulus and tan delta on moisture content. The data from stress relaxation and creep was fitted by using generalized Maxwell model and Burgers model. 5-element Maxwell model was better for describing relaxation behaviors of hulless barely stem compared with the 3-element Maxwell model. The peak values of loss modulus and tan delta both occurred at a low temperature when moisture content increased. The dynamic mechanical properties can provide useful information for the harvesting and processing of huless barely stem.

Keywords: moisture content; hulless barley stems; viscoelastic model

References

  • [1]

    Shaw M, Tabil L Mechanical properties of selected biomass grinds. Proc ASABE Annual Int Meeting. 2006.Google Scholar

  • [2]

    Mnazari G, , Jafari A, Mohtasebi SS, Tabatabaeefar A, Sharifi A, O'Dogherty MJ, Rafiee S, et al. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosyst Eng. 2008;101:199–208CrossrefWeb of ScienceGoogle Scholar

  • [3]

    Ling G. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.). Acta Agronomica Sinica. 2008;34:653–661.CrossrefGoogle Scholar

  • [4]

    Liao Y, Liao Q, Tian B, Shu CX, Wang J, Ma AL. Experimental research on the mechanical physical parameters of bottom stalk of the Arundo donax L. in harvesting period. Trans Chin Soc Agric Eng. 2007;23:124–129Google Scholar

  • [5]

    Li XP, Wang S, Du G, Wu ZK, Meng YJ. Variation in physical and mechanical properties of hemp stalk fibers along height of stem. Ind Crop Prod. 2013;42:344–348CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Shi YY, Chen M, Wang XC. Experiment and analysis on mechanical properties of Artemisia selengensis stalk. Int J Agric Biol Eng. 2017;10:16–25.Google Scholar

  • [7]

    Nobile MA, Chillo S, Mentana A, Baiano A. Use of the generalized Maxwell model for describing the stress relaxation behavior of solid-like foods. J Food Eng. 2007;78:978–983Web of ScienceCrossrefGoogle Scholar

  • [8]

    Nguyen TD, Qi HJ, Castro F, Long KN. A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation. J Mech Phys Solid. 2008;56:2792–2814CrossrefGoogle Scholar

  • [9]

    Tavakoli HS, Mohtasebi SS, Jaferi A. Physical and mechanical properties of wheat straw as influenced by moisture content. Int Agrophys. 2009;23:175–181.Google Scholar

  • [10]

    Guo YM, Yuan H, Yin Y, Li L, Li HB. Biomechanical evaluation and grey relational analysis of lodging resistance of stalk crops. Trans Chin Soc Agric Eng. 2007;23:14–18Google Scholar

  • [11]

    Yuan ZH, Zhang XL, Xu GZ, Zhao XX. The influences of the stem structure and elastic modulus on wheat lodging. Adv Mater Res. 2012;524-527:2330–2333CrossrefGoogle Scholar

  • [12]

    Li XZ, Ren HQ, Wang XQ. Analysis on dynamic mechanical properties of phyllostachys pubescens material. J Southwest Forestry U. 2011;31:80–84.Google Scholar

  • [13]

    Polat RF, Kaplan F, Kos̆Utic´ S. Determination of cutting properties of cotton stalk. Enfermería Global. 2008;75:305–311.Google Scholar

  • [14]

    Geethamma VG, Pothen LA, Rhao B, Neelakantan NR, Thomas S. Tensile stress relaxation of short-coir-fiber-reinforced natural rubber composites. J Appl Polym Sci. 2010;94:96–104Google Scholar

  • [15]

    Sluiter A Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedures. National Renewable Energy Laboratory, Golden, CO, USA, 2004.Google Scholar

  • [16]

    Zhou YG, Wang LJ, Li D, Yan PY, Li YB, Shi J, et al. Effect of sucrose on dynamic mechanical characteristics of maize and potato starch films. Carbohyd Polym. 2009;76:239–243Web of ScienceCrossrefGoogle Scholar

  • [17]

    Instruments TA, Dynamic mechanical analyzer Q series TM getting started guide. TA instruments-waters LLC, 109 Lukens Driver, New Castle. DE 19720, USA, 2004.Google Scholar

  • [18]

    Liao N, , Chen LJ, Huang GQ, He C, Han LJ. Grey relation analysis of lignocellulose content and compression stress relaxation of corn stalk. T Chin Soc Agric Mach. 2011;42:127–132Google Scholar

  • [19]

    Li Q, Li D, Wang LJ, Ozkan N, Mao ZH. Dynamic viscoelastic properties of sweet potato studied by dynamic mechanical analyzer. Carbohyd Polym. 2010;79:520–525Web of ScienceCrossrefGoogle Scholar

  • [20]

    Schultz EL, Mazzuco MM, Machado RA, Bolzan A, Quadri MB, Quadri MGN. Effect of pre-treatments on drying, density and shrinkage of apple slices. J Food Eng. 2007;78:1103–1110CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Sheng SY, Wang LJ, Li D, Mao ZH, Adhikari B. Viscoelastic behavior of maize kernel studied by dynamic mechanical analyzer. Carbohyd Polym. 2014;112:350–358CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Champion D, Meste ML, Simatos D. Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends Food Sci Tech. 2000;11:41–55.CrossrefGoogle Scholar

  • [23]

    Jin X, Vand der Sman RG, van Maanen JF, van Deventer HC, van Straten G, Boom RM, et al. Moisture Sorption Isotherms of Broccoli Interpreted with the Flory-Huggins Free Volume Theory. Food Biophys. 2014;9:1–9CrossrefWeb of ScienceGoogle Scholar

  • [24]

    Idicula M, Malhotra SK, Joseph K, Thomas S. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol. 2005;65:1077–1087CrossrefGoogle Scholar

  • [25]

    Chuang CC, Yeh AI. Rheological characteristics and texture attributes of glutinous rice cakes (mochi). J Food Eng. 2006;74:314–323.CrossrefGoogle Scholar

  • [26]

    Chang SQ, Li D, Lan YB, Ozkan N, Shi J, Chen XD, et al. Study on creep properties of japonica cooked rice and its relationship with rice chemical compositions and sensory evaluation. Int J Food Eng. 2009;5:64–67Web of ScienceGoogle Scholar

  • [27]

    Moffat AM, Papale D, Reichstein M, Hollinger D, Richardson AD, Barr AG, et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric Forest Meteorol. 2007;147:209–332CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-01-25

Accepted: 2018-12-05

Revised: 2018-11-21

Published Online: 2019-01-16


Citation Information: International Journal of Food Engineering, Volume 15, Issue 1-2, 20180033, ISSN (Online) 1556-3758, DOI: https://doi.org/10.1515/ijfe-2018-0033.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in