Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Food Engineering

Editor-in-Chief: Chen, Xiao Dong

IMPACT FACTOR 2017: 0.923

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.350
Source Normalized Impact per Paper (SNIP) 2018: 0.467

See all formats and pricing
More options …
Volume 15, Issue 3-4


NIR Spectroscopy Coupled Chemometric Algorithms for Rapid Antioxidants Activity Assessment of Chinese Dates (Zizyphus Jujuba Mill.)

Muhammad Arslan / Zou Xiaobo
  • Corresponding author
  • School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Haroon Elrasheid Tahir / Hu Xuetao / Allah Rakha / Muhammad Zareef / Emmanuel Amomba Seweh / Sajid Basheer
Published Online: 2019-03-16 | DOI: https://doi.org/10.1515/ijfe-2018-0148


In this work, near-infrared spectroscopy coupled the classical PLS and variable selection algorithms; synergy interval-PLS, backward interval-PLS and genetic algorithm-PLS for rapid measurement of the antioxidant activity of Chinese dates. The chemometric analysis of antioxidant activity assays was performed. The built models were investigated using correlation coefficients of calibration and prediction; root mean square error of prediction, root mean square error of cross-validation and residual predictive deviation (RPD). The correlation coefficient for calibration and prediction sets and RPD values ranged from 0.8503 to 0.9897, 0.8463 to 0.9783 and 1.86 to 4.88, respectively. In addition, variable selection algorithms based on efficient information extracted from acquired spectra were superior to classical PLS. The overall results revealed that near-infrared spectroscopy combined with chemometric algorithms could be used for rapid quantification of antioxidant content in Chinese dates samples.

Keywords: antioxidant assays; chemometric algorithms; jujube fruit; NIR spectroscopy; variable selection


  • [1]

    Zhang H, Jiang L, Ye S, Ye Y, Ren F. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food Chem Toxicol. 2010;48:1461–5.Web of ScienceCrossrefPubMedGoogle Scholar

  • [2]

    Li J-W, Fan L-P, Ding S-D, Ding X-L. Nutritional composition of five cultivars of Chinese jujube. Food Chem. 2007;103:454–60.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    Plastina P, Bonofiglio D, Vizza D, Fazio A, Rovito D, Giordano C, et al. Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. J Ethnopharmacol. 2012;140:325–32.CrossrefWeb of SciencePubMedGoogle Scholar

  • [4]

    Yu L, Jiang B, Luo D, Shen X, Guo S, Duan J, et al. Bioactive components in the fruits of Ziziphus jujuba Mill. against the inflammatory irritant action of Euphorbia plants. Phytomed. 2012;19:239–44.CrossrefGoogle Scholar

  • [5]

    Loizzo MR, Tundis R, Bonesi M, Menichini F, Mastellone V, Avallone L, et al. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J Food Comp Anal. 2012;25:179–84.CrossrefGoogle Scholar

  • [6]

    Abdallah IB, Tlili N, Martinez-Force E, Rubio AGP, Perez-Camino MC, Albouchi A, et al. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015;173:972–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [7]

    Flores G, Wu S-B, Negrin A, Kennelly EJ. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015;170:327–35.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [8]

    Liu L, Cozzolino D, Cynkar W, Gishen M, Colby C. Geographic classification of Spanish and Australian Tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. J Agric Food Chem. 2006;54:6754–9.PubMedCrossrefGoogle Scholar

  • [9]

    Wu D, Chen J, Lu B, Xiong L, He Y, Zhang Y. Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract. Food Chem. 2012;135:2147–56.Web of SciencePubMedCrossrefGoogle Scholar

  • [10]

    Yahui L, Xiaobo Z, Tingting S, Jiyong S, Jiewen Z, Holmes M. Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics. Food Anal Methods. 2017;10:1034–44.Web of ScienceCrossrefGoogle Scholar

  • [11]

    Lin C, Chen X, Jian L, Shi C, Jin X, Zhang G. Determination of grain protein content by near-infrared spectrometry and multivariate calibration in barley. Food Chem. 2014;162:10–15.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [12]

    Wang A, Xie L. Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit. J Food Eng. 2014;143:17–24.Web of ScienceCrossrefGoogle Scholar

  • [13]

    Dong C, Zhu H, Wang J, Yuan H, Zhao J, Chen Q. Prediction of black tea fermentation quality indices using NIRS and nonlinear tools. Food Sci Biotech. 2017;26:853–60.CrossrefGoogle Scholar

  • [14]

    Zareef M, Chen Q, Ouyang Q, Kutsanedzie F, Hassan MM, Annavaram V, et al. Prediction of amino acids, caffeine, theaflavins and water extract in black tea by FT-NIR spectroscopy coupled chemometrics algorithms. Anal Methods. 2018;10:3023–31.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Haughey SA, Graham SF, Cancouët E, Elliott CT. The application of near-infrared reflectance spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chem. 2013;136:1557–61.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [16]

    Bedini A, Zanolli V, Zanardi S, Bersellini U, Dalcanale E, Suman M. Rapid and simultaneous analysis of xanthines and polyphenols as bitter taste markers in bakery products by FT-NIR spectroscopy. Food Anal Methods. 2013;6:17–27.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Arslan M, Rakha A, Khan MR, Zou X. Complementing the dietary fiber and antioxidant potential of gluten free bread with guava pulp powder. J Food Meas Charact. 2017;11:1959–68.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28:25–30.CrossrefGoogle Scholar

  • [19]

    Frankel EN, Meyer AS. The problems of using one‐dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric. 2000;80:1925–41.CrossrefGoogle Scholar

  • [20]

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.CrossrefPubMedGoogle Scholar

  • [21]

    Lmj DC, Gomes PB, de Oliveira Godoy RL, Pacheco S, Do Monte PHF, de Carvalho JLV, et al. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res Int. 2012;47:337–40.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–9.CrossrefGoogle Scholar

  • [23]

    Gao G, Ren P, Cao X, Yan B, Liao X, Sun Z, et al. Comparing quality changes of cupped strawberry treated by high hydrostatic pressure and thermal processing during storage. Food Bioprod Process. 2016;100:221–9.CrossrefWeb of ScienceGoogle Scholar

  • [24]

    Xiong X, Li M, Xie J, Jin Q, Xue B, Sun T. Antioxidant activity of xanthan oligosaccharides prepared by different degradation methods. Carbohyd Polym. 2013;92:1166–71.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    Kiliç I, Yeşiloğlu Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim Acta Part A. 2013;115:719–24.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Helland IS, Næs T, Isaksson T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemometr Intell Lab. 1995;29:233–41.CrossrefGoogle Scholar

  • [27]

    Tahir HE, Xiaobo Z, Jiyong S, Mariod AA, Wiliam T. Rapid determination of antioxidant compounds and antioxidant activity of Sudanese Karkade (Hibiscus sabdariffa L.) using near infrared spectroscopy. Food Anal Methods. 2016;9:1228–36.Web of ScienceCrossrefGoogle Scholar

  • [28]

    Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab. 2001;58:109–30.CrossrefGoogle Scholar

  • [29]

    He H-J, Sun D-W, Wu D. Rapid and real-time prediction of lactic acid bacteria (LAB) in farmed salmon flesh using near-infrared (NIR) hyperspectral imaging combined with chemometric analysis. Food Res Int. 2014;62:476–83.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Norgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc. 2000;54:413–19.CrossrefGoogle Scholar

  • [31]

    Teye E, Huang X. Novel prediction of total fat content in cocoa beans by FT-NIR spectroscopy based on effective spectral selection multivariate regression. Food Anal Methods. 2015;8:945–53.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    Durand A, Devos O, Ruckebusch C, Huvenne J. Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton–viscose textiles. Anal Chim Acta. 2007;595:72–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • [33]

    Bowden GJ, Dandy GC, Maier HR. Input determination for neural network models in water resources applications. Part 1-background and methodology. J Hydrol. 2005;301:75–92.CrossrefGoogle Scholar

  • [34]

    Chen Q, Jiang P, Zhao J. Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm. Spectrochim Acta Part A. 2010;76:50–5.Web of ScienceCrossrefGoogle Scholar

  • [35]

    Nicolai BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, et al. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol Technol. 2007;46:99–118.Web of ScienceCrossrefGoogle Scholar

  • [36]

    Wei X, Huang Z, Zhang W, Du Y. Improving the sensitivity of NIR spectroscopy with an enrichment technique: determining a trace analyte of ethyl carbamate. Anal Sci. 2007;23:853–6.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [37]

    Meza CP, Santos MA, Romañach RJ. Quantitation of drug content in a low dosage formulation by transmission near infrared spectroscopy. AAPS Pharm Sci Tech. 2006;7:E206–E14.CrossrefGoogle Scholar

  • [38]

    Davey MW, Saeys W, Hof E, Ramon H, Swennen RL, Keulemans J. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J Agric Food Chem. 2009;57:1742–51.Web of ScienceCrossrefPubMedGoogle Scholar

  • [39]

    Viegas TR, Mata AL, Duarte MM, Lima KM. Determination of quality attributes in wax jambu fruit using NIRS and PLS. Food Chem. 2016;190:1–4.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [40]

    Velioglu SD, Temiz HT, Ercioglu E, Velioglu HM, Topcu A, Boyaci IH. Use of Raman spectroscopy for determining erucic acid content in canola oil. Food Chem. 2017;221:87–90.Web of ScienceCrossrefPubMedGoogle Scholar

  • [41]

    Friedel M, Patz C-D, Dietrich H. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis. Food Chem. 2013;141:4200–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [42]

    Yang Y, Wang L, Wu Y, Liu X, Bi Y, Xiao W, et al. On-line monitoring of extraction process of Flos Lonicerae Japonicae using near infrared spectroscopy combined with synergy interval PLS and genetic algorithm. Spectrochim Acta Part A. 2017;182:73–80.Web of ScienceCrossrefGoogle Scholar

  • [43]

    Da Silva DJ, Wiebeck H. Using PLS, iPLS and siPLS linear regressions to determine the composition of LDPE/HDPE blends: A comparison between confocal Raman and ATR-FTIR spectroscopies. Vib Spectrosc. 2017;92:259–66.Web of ScienceCrossrefGoogle Scholar

  • [44]

    Pan W, Zhao J, Chen Q, Yuan L. In situ monitoring of total polyphenols content during tea extract oxidation using a portable spectroscopy system with variables selection algorithms. RSC Adv. 2015;5:60876–83.CrossrefWeb of ScienceGoogle Scholar

  • [45]

    Zou X, Zhao J, Li Y. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’apple based on BiPLS and FiPLS models. Vib Spectrosc. 2007;44:220–7.CrossrefWeb of ScienceGoogle Scholar

  • [46]

    Arslan M, Xiaobo Z, Xuetao H, Elrasheid Tahir H, Shi J, Khan MR, et al. Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.). J Near Infrared Spec. 2018;26:275–86.Web of ScienceCrossrefGoogle Scholar

  • [47]

    Arslan M, Zou X, Haroon Elrasheid T, Hu X, Allah R, Sajid B, et al. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.). J Food Meas Charact. 2018;12:2366–76.CrossrefWeb of ScienceGoogle Scholar

  • [48]

    Wiegand P, Pell R, Comas E. Simultaneous variable selection and outlier detection using a robust genetic algorithm. Chemometr Intell Lab. 2009;98:108–14.CrossrefWeb of ScienceGoogle Scholar

  • [49]

    Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip Rev: Comput Stat. 2010;2:97–106.CrossrefGoogle Scholar

  • [50]

    Lin H, Zhao J-W, Sun L, Chen Q-S, Sun Z, Zhou F. Stiffness measurement of eggshell by acoustic resonance and PLS models. J Food Eng. 2011;103:351–6.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-05-08

Accepted: 2019-02-07

Revised: 2018-10-13

Published Online: 2019-03-16

Conflict of interest All the authors declare that they do not have any conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Informed consent is not applicable in this study.

Citation Information: International Journal of Food Engineering, Volume 15, Issue 3-4, 20180148, ISSN (Online) 1556-3758, DOI: https://doi.org/10.1515/ijfe-2018-0148.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in