Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Food Engineering

Editor-in-Chief: Chen, Xiao Dong

12 Issues per year


IMPACT FACTOR 2016: 0.685

CiteScore 2016: 0.73

SCImago Journal Rank (SJR) 2016: 0.293
Source Normalized Impact per Paper (SNIP) 2016: 0.391

Online
ISSN
1556-3758
See all formats and pricing
More options …
Volume 10, Issue 2

Issues

The Effect of Lactic Acid Bacteria in Food and Feed and Their Impact on Food Safety

Wei Wang
  • Key Research Institute of Food Safety Strategy and Management, College of Economics and Management, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ HaiKuan Wang
  • Corresponding author
  • Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-30 | DOI: https://doi.org/10.1515/ijfe-2013-0042

Abstract

Pathogenic microorganism contamination of food and feed is a serious problem worldwide. The use of microorganism to preserve food and feed has gained importance in recent years due to the demand for the reduced use of chemical preservatives by consumers and the increasing number of microbial species resistant to antibiotics and preservatives. Lactic acid bacteria (LAB) not only produce various antimicrobial compounds that are considered important in the bio-preservation of food and feed and are both cost-effective and safe. At present, many pieces of data have shown that LAB, as a bio-preservative, can improve the quality of food and feed and prolong their shelf life. This review summarises these findings and demonstrates that LAB are promising biological agents for food and feed safety.

Keywords: lactic acid bacteria; food and feed; food safety; bio-preservative

References

  • 1.

    Rattanachaikunsopon P, Phumkhachorn P. Lactic acid bacteria: their antimicrobial compounds and their uses in food production. Ann Biol Res 2010;4:218–28.Google Scholar

  • 2.

    Silva J, Carvalho A, Teixeira P, Gibbs P. Bacteriocin production by spray-dried lactic acid bacteria. Lett Appl Microbiol 2002;34:77–81.CrossrefGoogle Scholar

  • 3.

    Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E. Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Communicating Curr Res Educ Top Trends Appl Microbiol 2007;1:475–86.Google Scholar

  • 4.

    Dal Bello F, Clarke CI, Ryan LA, Ulmer H, Schober TJ, Strom K, et al. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 2007;45:309–18.Google Scholar

  • 5.

    De Muynck C, Leroy AI, De Maeseneire S, Arnaut F, Soetaert W, Vandamme EJ. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol Res 2004;159:339–46.CrossrefGoogle Scholar

  • 6.

    Leon Pelaez AM, Serna Catano CA, Quintero Yepes EA, Gamba Villarroel RR, De Antoni GL, Giannuzzi L. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 2012;24:177–83.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Venturini ME, Blanco D, Oria R. In vitro antifungal activity of several antimicrobial compounds against Penicillium expansum. J Food Prot 2002;65:834–9.Google Scholar

  • 8.

    Morgan SM, Galvin M, Kelly J, Ross RP, Hill C. Development of a lacticin 3147-enriched whey powder with inhibitory activity against foodborne pathogens. J Food Prot 1999;62:1011–16.Google Scholar

  • 9.

    Sjogren J, Magnusson J, Broberg A, Schnurer J, Kenne L. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 2003;69:7554–7.Google Scholar

  • 10.

    Chung T, Axelsson L, Lindgren S, Dobrogosz W. In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb Ecol Health Dis 1989;2:137–44.CrossrefGoogle Scholar

  • 11.

    Gerez CL, Carbajo MS, Rollan G, Torres Leal G, Font de Valdez G. Inhibition of citrus fungal pathogens by using lactic acid bacteria. J Food Sci 2010;75:M354–9.Web of ScienceCrossrefGoogle Scholar

  • 12.

    Gong Y, Hounsa A, Egal S, Turner PC, Sutcliffe AE, Hall AJ, et al. Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ Health Perspect 2004;112:1334.CrossrefGoogle Scholar

  • 13.

    Hosono A, Hisamatsu S. Binding of amino acid pyrolysates and aflatoxins to autoclaved cells of Enterococcus faecalis FK-23. Biosci Biotechnol Biochem 1995;59:940–2.CrossrefGoogle Scholar

  • 14.

    Del Prete V, Rodriguez H, Carrascosa AV, Rivas BD, Garcia-Moruno E, Munoz R. In vitro removal of ochratoxin a by wine lactic acid bacteria. J Food Prot 2007;70:2155–60.Google Scholar

  • 15.

    Legan J. Mould spoilage of bread: the problem and some solutions. Int Biodeterioration Biodegradation 1993;32:33–53.CrossrefGoogle Scholar

  • 16.

    Gould GW. Methods for preservation and extension of shelf life. Int J Food Microbiol 1996;33:51–64.CrossrefGoogle Scholar

  • 17.

    Lauková A, Czikková S. The use of enterocin CCM 4231 in soy milk to control the growth of Listeria monocytogenes and Staphylococcus aureus. J Appl Microbiol 1999;87:182–.Google Scholar

  • 18.

    Sobrino-López A, Martín-Belloso O. Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 2008;18:329–43.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, et al. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and salmonella Enteritidis. Int J Food Microbiol 2009;130:219–26.Web of ScienceCrossrefGoogle Scholar

  • 20.

    Laitila A, Alakomi HL, Raaska L, Mattila-Sandholm T, Haikara A. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J Appl Microbiol 2002;93:566–76.CrossrefGoogle Scholar

  • 21.

    Trias R, Bañeras L, Montesinos E, Badosa E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 2010;11:231–6.Web of ScienceGoogle Scholar

  • 22.

    Rouse S, Harnett D, Vaughan A, van Sinderen D. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 2008;104:915–23.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Sathe S, Nawani N, Dhakephalkar P, Kapadnis B. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J Appl Microbiol 2007;103:2622–8.CrossrefGoogle Scholar

  • 24.

    Lan W-T, Chen Y-S, Wu H-C, Yanagida F. Bio-protective potential of lactic acid bacteria isolated from fermented wax gourd. Folia Microbiol 2012;57:99–105.Web of ScienceCrossrefGoogle Scholar

  • 25.

    Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 2000;66:4084–90.CrossrefGoogle Scholar

  • 26.

    Ercolini D, Storia A, Villani F, Mauriello G. Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol 2006;100:765–72.CrossrefGoogle Scholar

  • 27.

    Lan C-H, Chaine A, Greacutegoire L, Wacheacute Y. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol 2010;27:940–4.Google Scholar

  • 28.

    Schnurer J, Magnusson J. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 2005;16:70–8.CrossrefGoogle Scholar

  • 29.

    Reis JA, Paula AT, Casarotti SN, Penna AL. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 2012;4:124–40.Web of ScienceGoogle Scholar

  • 30.

    Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 2008;121:123–38.CrossrefWeb of ScienceGoogle Scholar

  • 31.

    Franklin NB, Cooksey KD, Getty KJ. Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J Food Prot 2004;67:480–5.Google Scholar

  • 32.

    Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F. Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol 2004;97:314–22.CrossrefGoogle Scholar

  • 33.

    Jin T, Zhang H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 2008;73:M127–M34.Web of ScienceGoogle Scholar

  • 34.

    Santiago-Silva P, Soares NF, Nobrega JE, Junior MA, Barbosa KB, Volp AC, et al. Antimicrobial efficiency of film incorporated with pediocin [ALTA® 2351] on preservation of sliced ham. Food Control 2009;20:85–9.Web of ScienceGoogle Scholar

  • 35.

    Gaggia F, Di Gioia D, Baffoni L, Biavati B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Technol 2011;22:S58–66.Web of ScienceCrossrefGoogle Scholar

  • 36.

    Karunasagar I, Pai R, Malathi G. Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture 1994;128:203–9.CrossrefGoogle Scholar

  • 37.

    Tortuero F, Rioperez J, Fernandez E, Rodriguez M. Response of piglets to oral administration of lactic acid bacteria. J Food Prot 1995;58:1369–74.Google Scholar

  • 38.

    Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the efficacy of a probiotic containing lactobacillus, bifidobacterium, enterococcus, and pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Sci 2007;86:309–17.CrossrefWeb of ScienceGoogle Scholar

  • 39.

    Perez Guerra N, Fajardo Bernardez P, Mendez J, Cachaldora P, Pastrana Castro L. Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Anim Feed Sci Technol 2007;134:89–107.Google Scholar

  • 40.

    Willis WL, Reid L. Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poultry Sci 2008;87:606–11.CrossrefWeb of ScienceGoogle Scholar

  • 41.

    Shu Q, Qu F, Gill HS. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 2001;33:171–7.Google Scholar

  • 42.

    Agarwal N, Kamra DN, Chaudhary LC, Agarwal I, Sahoo A, Pathak NN. Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Lett Appl Microbiol 2002;34:329–36.CrossrefGoogle Scholar

  • 43.

    Timmerman HM, Mulder L, Everts H, van Espen DC, van der Wal E, Klaassen G, et al. Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci 2005;88:2154–65.CrossrefGoogle Scholar

  • 44.

    Peterson RE, Klopfenstein TJ, Erickson GE, Folmer J, Hinkley S, Moxley RA, et al. Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157 : H7 fecal shedding and finishing performance in beef feedlot cattle. J Food Prot 2007;70:287–91.Google Scholar

  • 45.

    Francoise L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol 2010;27:698–709.CrossrefGoogle Scholar

About the article

Published Online: 2014-04-30

Published in Print: 2014-06-01


Citation Information: International Journal of Food Engineering, Volume 10, Issue 2, Pages 203–210, ISSN (Online) 1556-3758, ISSN (Print) 2194-5764, DOI: https://doi.org/10.1515/ijfe-2013-0042.

Export Citation

©2014 by Walter de Gruyter Berlin / Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rafael Chacon Ruiz Martinez, Verônica Ortiz Alvarenga, Marcelo Thomazini, Carmen Sílvia Fávaro-Trindade, and Anderson de Souza Sant'Ana
LWT - Food Science and Technology, 2016, Volume 68, Page 67
[2]
Sabrina da Silva Sabo, Michele Vitolo, José Manuel Domínguez González, and Ricardo Pinheiro de Souza Oliveira
Food Research International, 2014, Volume 64, Page 527

Comments (0)

Please log in or register to comment.
Log in