Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Food Engineering

Editor-in-Chief: Chen, Xiao Dong


IMPACT FACTOR 2017: 0.923

CiteScore 2017: 0.98

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.505

Online
ISSN
1556-3758
See all formats and pricing
More options …
Volume 14, Issue 7-8

Issues

Microencapsulation of Ammonium Bicarbonate by Phase Separation and Using Palm Stearin/Carnauba Wax as Wall Materials

Baomiao Ding
  • Corresponding author
  • College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
  • Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan(R.O.C.)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Quanhui Zheng / Minhsiung Pan
  • Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan(R.O.C.)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yishiou Chiou
  • Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan(R.O.C.)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fengwei Yan / Zhenshun Li
Published Online: 2018-07-24 | DOI: https://doi.org/10.1515/ijfe-2017-0270

Abstract

Ammonium bicarbonate microcapsules (AMBCMC) were prepared by phase separation method using palm stearin/carnauba wax (CNW) as wall materials. The morphology of AMBCMC showed that the microcapsules were mainly spherical shapes. DSC analysis results suggested that the microcapsule shells began melting at the temperature 47.9 °C, while the shells were thoroughly destructed at the temperature above 78.1 °C. The particle sizes of AMBCMC were chiefly distributed in the range of 30 ~ 300 μm. Ammonium bicarbonate (AMBC) in microcapsules was highly stable under different relative humidity, and AMBCMC was hardly damaged even at 95% relative humidity. The thermal stability of AMBC increased, while AMBC encapsulated in microcapsules still could decompose and release gas at 70 °C as well as free AMBC. Furthermore, AMBC encapsulated in microcapsules showed strong survivability in the presence of citric acid. The results indicated that the stability and compatibility of AMBC were effectively increased after microencapsulation.

Keywords: leavening agent; microencapsulation; wall material; compatibility; survivability

References

  • [1]

    Miller R. Leavening agents. In: Caballero B, Finglas PM, Toldrá F, editor(s). Encyclopedia of Food and Health, 1st ed. Oxford: Academic Press, 2016:523–28.Google Scholar

  • [2]

    Cauvain SP. Cookies, biscuits and crackers: formulation, processing and characteristics. In: Wrigley C, Corke H, Seetharaman K, Faubion J, editor(s). Encyclopedia of Food Grains, 2nd ed. Vol. 3. Oxford: Academic Press, 2016:37–43.Google Scholar

  • [3]

    Aguiar J, Estevinho BN, Santos L. Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trend Food Sci Tech. 2016;58:21–39.CrossrefGoogle Scholar

  • [4]

    Gonçalves A, Estevinho BN, Rocha F. Microencapsulation of vitamin A: A review. Trend Food Sci Tech. 2016;51:76–87.CrossrefGoogle Scholar

  • [5]

    Carvalho IT, Estevinho BN, Santos L. Application of microencapsulated essential oils in cosmetic and personal healthcare products – a review. Int J Cosmetic Sci. 2016;38:109–19.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Tan C, Feng B, Zhang X, Xia W, Xia S. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloid. 2016;52:774–84.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Wang M, Gao F, Zheng H, Zhang T, Guo M. Microencapsulation of ginsenosides using polymerised whey protein (PWP) as wall material and its application in probiotic fermented milk. Int J Food Sci Tech. 2017;52:1009–17.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    Tomiuk S, Liu Y, Green TJ, King MJ, Finglas PM, Kitts DD. Studies on the retention of microencapsulated l-5-methyltetrahydrofolic acid in baked bread using skim milk powder. Food Chem. 2012;133:249–55.Web of SciencePubMedCrossrefGoogle Scholar

  • [9]

    Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: A review. Int J Food Sci Nutr. 1999;50:213–24.CrossrefPubMedGoogle Scholar

  • [10]

    Cho YH, Park J. Characteristics of double-encapsulated flavor powder prepared by secondary fat coating process. J Food Sci. 2002;67:968–72.CrossrefGoogle Scholar

  • [11]

    Samejima M, Hirata G, Koida Y. Studies on microcapsules. I. Role and effect of coacervation-inducing agents in the microencapsulation of ascorbic acid by a phase separation method. Chem Pharm Bull. 1982;30:2894–99.CrossrefPubMedGoogle Scholar

  • [12]

    Mandal TK. Evaluation of a novel phase separation technique for the encapsulation of water-soluble drugs in biodegradable polymer. Drug Dev Ind Pharm. 1998;24:623–29.PubMedCrossrefGoogle Scholar

  • [13]

    Uddin MS, Hawlader MN, Zhu HJ. Microencapsulation of ascorbic acid: effect of process variables on product characteristics. J Microencapsul. 2001;18:199–209.PubMedCrossrefGoogle Scholar

  • [14]

    GB/T 6276.1. Determination of ammonium hydrogen carbonate for industrial use- Part 1: ammonium hydrogen carbonate content- Acid-base method. National Standard of the People’s Republic of China. 2008.Google Scholar

  • [15]

    Li Z, Zhang H, Zheng W, Wang W, Huang H, Wang C, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc. 2008;130:5036–37.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [16]

    Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomed-Nanotechnol. 2010;6:753–59.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Hou D, Xie C, Huang K, Zhu C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterial. 2003;24:1781–85.CrossrefGoogle Scholar

  • [18]

    Attama AA, Müller-Goymann CC. Characterization of solid lipid nanoparticles with mixed lipid core for controlled drug delivery applications. Eur J Pharm Biopharm. 2007;67:48–57.CrossrefGoogle Scholar

  • [19]

    Ibrahim NA, Guo Z, Xu X. Enzymatic interesterification of palm stearin and coconut oil by a dual lipase system. J Am Oil Chem Soc. 2008;85:37–45.Web of ScienceCrossrefGoogle Scholar

  • [20]

    Despond S, Espuche E, Cartier N, Domard A. Barrier properties of paper–chitosan and paper–chitosan–carnauba wax films. J Appl Polym Sci. 2005;98:704–10.CrossrefGoogle Scholar

  • [21]

    Weller CL, Gennadios A, Saraiva RA. Edible bilayer films from zein and grain sorghum wax or carnauba wax. LWT - Food Sci Tech. 1998;31:279–85.CrossrefGoogle Scholar

  • [22]

    Chiumarelli M, Hubinger MD. Stability, solubility, mechanical and barrier properties of cassava starch – carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloid. 2012;28:59–67.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Zhang X, Tao X, Yick K, Wang X. Structure and thermal stability of microencapsulated phase-change materials. Colloid Polym Sci. 2004;282:330–36.CrossrefGoogle Scholar

  • [24]

    Özonur Y, Mazman M, Paksoy HÖ, Evliya H. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int J Energy Res. 2006;30:741–49.CrossrefGoogle Scholar

  • [25]

    Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew Sust Energy Rev. 2011;15:1373–91.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Lin C, Lin S, Hwang L. Microencapsulation of squid oil with hydrophilic macromolecules for oxidative and thermal stabilization. J Food Sci. 1995;60:36–39.CrossrefGoogle Scholar

  • [27]

    Brodie J, Godber J. Bakery processes, chemical leavening agents. In: Othmer K, editor(s). Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, Inc, 2007Google Scholar

  • [28]

    Zolfaghari MS, Asadi G, Ardebili SM, Larijani K. Evaluation and comparison of different dough leavening agents on quality of lavash bread. J Food Meas Charact. 2017;11:93–98.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Vetter JL. Leavening agents. In: Caballero B, editor(s). Encyclopedia of Food Sciences and Nutrition, 2nd ed. Oxford: Academic Press, 2003:3485–90.Google Scholar

About the article

Received: 2017-08-14

Accepted: 2018-06-26

Revised: 2018-06-19

Published Online: 2018-07-24


Citation Information: International Journal of Food Engineering, Volume 14, Issue 7-8, 20170270, ISSN (Online) 1556-3758, DOI: https://doi.org/10.1515/ijfe-2017-0270.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in