Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Occupational Medicine and Environmental Health


IMPACT FACTOR 2014: 0.695
5-year IMPACT FACTOR: 1.332

SCImago Journal Rank (SJR) 2014: 0.370
Source Normalized Impact per Paper (SNIP) 2014: 0.554
Impact per Publication (IPP) 2014: 1.071

Open Access
Online
See all formats and pricing
More options …

De Minimus Non Curat Lex - Virtual Thresholds for Cancer Initiation by Tobacco Specific Nitrosamines - Prospects for Harm Reduction by Smokeless Tobacco

Robert Nilsson
  • Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-06-13 | DOI: https://doi.org/10.2478/v10001-006-0004-y

De Minimus Non Curat Lex - Virtual Thresholds for Cancer Initiation by Tobacco Specific Nitrosamines - Prospects for Harm Reduction by Smokeless Tobacco

Whereas the impact of tobacco specific nitrosamines in smokers is obscured by the presence of numerous other carcinogens and promoters, for smokeless tobacco virtually all the carcinogenic potential is associated with 4-(nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). In some countries exposure to smokeless tobacco with extremely high nitrosamine concentrations have been found to induce cancers in the head-neck region, whereas three recent large epidemiological studies failed to detect any such risk with respect to Swedish low-nitrosamine snuff. This review deals with quantitative aspects of DNA adduct formation from NNN and NNK in relation to the background levels ubiquitously found in healthy humans without known exposures to either tobacco or alkylating agents. The lack of significant increases of pro-mutagenic O6-methylations and DNA pyridyloxobutylations seen in smokers, as well as the negative outcome of the Swedish epidemiological studies, can be expected on basis of extrapolation of the dose response relationships found in rodents to actual exposures to NNK and NNN in Swedish snuff or from smoking. Sweden has the lowest prevalence of male smokers and smoking related diseases in the Western World, which has been ascribed to the fact that more than 20% of the grown up male population uses snuff. Smokeless tobacco represents an inexpensive and effective alternative to nicotine delivering products like nicotine patch, spray or gum. Considering that all other tobacco products are freely marketed, the ban on low-nitrosamine snuff in all countries in EU except Sweden is difficult to defend on either medical or ethical grounds.

Keywords: Cancer; Tobacco specific nitrosamines; Smokers; Epidemiology studies

  • Mustonen R, Schoket B, Hemminki K. Smoking-related DNA adducts: 32P-postlabeling analysis of 7-methylguanine in human bronchial and lymphocyte DNA. Carcinogenesis 1993;14(1):151-4.CrossrefGoogle Scholar

  • Szyfter K, Hemminki K, Szyfter W, Szmeja Z, Banaszewski J, Pabiszczak M. Tobacco smoke-associated 7-alkylguanine in DNA of larynx tissue and leucocytes. Carcinogenesis 1996;17(3):501-6.CrossrefGoogle Scholar

  • Bolt HM. Quantification of endogenous carcinogens.The ethylene oxide paradox. Biochem Pharmacol 1996;52(1):1-5.CrossrefPubMedGoogle Scholar

  • Magee PN, editor. Nitrosamines and Human Cancer. Banbury Report No. 12. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory, 1982.Google Scholar

  • O'Neill JK, Chen J, Bartsch H, editors. Relevance to Human Cancer of N-Nitroso Compounds, Tobacco Smoke and Mycotoxins. IARC Sci Publ No. 105. Lyon: World Health Organization; 1991.Google Scholar

  • Larsson BK, Sahlberg GP, Eriksson AT, Busk LÅ. Polycclic aromatic hydrocarbons in grilled food. J Agric Food Chem 1983;31:867-73.PubMedCrossrefGoogle Scholar

  • Zhao C, Tyndyk M, Eide I, Hemminki K. Endogenous and background DNA adducts by methylating and 2-hydroxyethylating agents. Mutat Res 1999;424(1-2):117-25.CrossrefPubMedGoogle Scholar

  • Takeshita M, Eisenberg W. Mechanism of mutation on DNA templates containing synthetic abasic sites: study with a double strand vector. Nucleic Acids Res 1994;22:1897-902.PubMedCrossrefGoogle Scholar

  • Elder RH, Jansen JG, Weeks RJ, Willington MA, Deans B, Watson AJ, et al. Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methane-sulfonate. Mol Cell Biol 1998;18(10):5828-5837.PubMedGoogle Scholar

  • Rothman N, Poirier MC, Baser ME, Hansen JA, Gentile C, Bowman ED, Strickland PT. The formation of polycyclic aromatic hydrocarbon-DNA adducts in peripheral white blood cells during consumption of charcoal-broiled beef. Carcinogenesis 1990;11:1241-3.CrossrefPubMedGoogle Scholar

  • Rothman N, Correa-Villasenor A, Ford DP, Poirier MC, Haas R, Hansen JA, et al. Contribution of occupation and diet to whole white cell polycyclic aromatic hydrocarbon-DNA adducts in wildland firefighters. Cancer Epidemiol Biomarkers Prev 1993;2:341-7.Google Scholar

  • Samuelsson C. Medical consequences of polonium in snuff. Läkartidningen. J Swedish Med Assoc 1989;86:2290-1 [in Swedish].Google Scholar

  • Boysen G, Kenney PM, Upadhyaya P, Wang M, Hecht SS. Effects of benzyl isothiocyanate and 2-phenethyl isothiocyanate on benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism in F-344 rats. Carcinogenesis 2003;24(3):517-25.CrossrefPubMedGoogle Scholar

  • Hecht SS, Chung FL, Richie JP Jr, Akerkar SA, Borukhova A, Skowronski L, et al. Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol Biomarkers Prev 1995;4(8):877-84.PubMedGoogle Scholar

  • Yi Z, Ohshima H, Bouvier G, Roy P, Zhong J, Li B, et al. Urinary excretion of nitrosamino acids and nitrate by inhabitants of high- and low-risk areas for nasopharyngeal carcinoma in southern China. Cancer Epidemiol Biomarkers Prev 1993;2:195-200.Google Scholar

  • Fishbein L. Cooking, heating and air treatment pollutants in indoor environments. In: Seifert B, Van de Weil HJ, Dodet B, O'Neill IK, editors. Environmental Carcinogens; Methods of Analysis and Exposure Measurements. Vol. 12 Indoor Air. IARC Sci. Publ No. 109. Lyon: International Agency for Research on Cancer; 1993. p. 35.Google Scholar

  • Nilsson R. Environmental tobacco smoke revisited: the reliability of the data used for risk assessment. Risk Analysis 2001;21(4):737-60.CrossrefGoogle Scholar

  • Fong LYY. Possible relationship of nitrosamines in the diet to causation of cancer in Hong Kong. In: Magee PN, editor. Nitrosamines and Human Cancer. Banbury Report No. 12. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory, 1982. p. 473-85.Google Scholar

  • Yu MC, Ho JHC, Lai S-H, Henderson BE. Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong-Kong. Cancer Res 1986;46:956-61.Google Scholar

  • Wilp J Zwickenpflug W Richter E Nitrosation of dietary myosmine as risk factor of human cancer. Food Chem Toxicol 2002;40:1223-8.PubMedCrossrefGoogle Scholar

  • IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. Tobacco Habits Other Than Smoking: Betel-Quid, and Areca Nut Chewing and Some Related Nitrosamines. Vol. 37. Lyon: World Health Organization; 1985.Google Scholar

  • Smith LE, Denissenko MF, Bennett WP, Li H, Amin S, Tang M, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 2000;92(10):803-11.PubMedCrossrefGoogle Scholar

  • Zwickenpflug W Meger M Richter E. Occurrence of the tobacco alkaloid myosmine in nuts and nut products of Arachus hypogaea and Corylus avellana. J Agric Food Chem 1998; 6:2703-6.CrossrefGoogle Scholar

  • Tyroller S Zwickenpflug W Richter E. New sources of dietary myosmine uptake from cereals, fruits, vegetables and milk. J Agric Food Chem 2002;50:4909-15.CrossrefPubMedGoogle Scholar

  • Richter E, Schlöbe D, Hölzle D, Wilp J. Comparative DNA and hemoglobin adduct formation by dietary myosmine and N'-nitro-sonornicotine in rats. Naunyn Schmiedebergs Arch Pharmacol 2002;365(Suppl 1):1-291.Google Scholar

  • Hoffmann D, Adams JD, Brunnemann KD, Hecht SS. Formation, occurrence, and carcinogenicity of N-nitrosamines in tobacco products. ACS. Am Chem Soc 1981;174:247-73.Google Scholar

  • Adams JD, Owens-Tucciarone P, Hoffmann D. Tobacco specific N-nitrosamines in dry snuff. Fd Chem Toxicol 1987;25:245-6.CrossrefGoogle Scholar

  • Hoffmann D, Djordjevic MV, Brunnemann KD. New brands of oral snuff. Fd Chem Toxicol 1991;29;65-8.CrossrefGoogle Scholar

  • Österdahl BG. Tobacco specific nitrosamines in snuff and chewing tobacco, 1983-1992. Analyses conducted by the National Swedish Food Agency, "Health Risks Associates with Snuf". Stockholm: Swedish Agency for Health and Welfare; 1996.Google Scholar

  • Swedish Government Food Administration, Jansson C, Österdahl BG. Low levels of nitrosamines in snuff on the Swedish market. Uppsala: Official Information Leaflet; 2004 [in Swedish].Google Scholar

  • Jayant K. Balakrishnan V, Sanghvi LD, Jussawalla DJ. Quantification of the role of smoking and tobacco chewing in oral, pharyngeal, and esophageal cancers. Brit J Cancer 1977;35:232-5CrossrefGoogle Scholar

  • IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. IARC Press release. No. 154. On New Monograph Covering Smokeless Tobacco. Vol. 89. Lyon: World Health Organization; 2005 [in press].Google Scholar

  • Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002;21(48):7435-51.CrossrefGoogle Scholar

  • Pfeifer GP, Hainaut P. On the origin of G → T transversions in lung cancer. Mutat Res 2003;526(1-2):39-43.Google Scholar

  • Rosenquist K, Wennerberg J, Schildt EB, Bladström A, Hansson BG, Andersson G. Use of Swedish moist snuff, smoking and alcohol consumption in the aetiology of oral and oropharyngeal squamous cell carcinoma. A population-based case-control study in southern Sweden. Acta Otolaryngol 2005;125(9):991-8.PubMedCrossrefGoogle Scholar

  • Office of Smoking and Health. US Department of Health and Human Services. Use of smokeless tobacco among adults; United States 1991. Morb Mortal Wkly Rep 1993;42:263-6.Google Scholar

  • Idris AM, Nair J, Oshima H, Friesen M, Brouet I, Faustman EM, et al. Unusually high levels of carcinogenic nitrosamines in Sudan snuff (toombak). Carcinogenesis 1991;12:1115-1118.PubMedCrossrefGoogle Scholar

  • Österdahl BG, Slorach SA. N-Nitrosamines in snuff and chewing tobacco on the Swedish market in 1983. Food Addit Contam 1984;1:299-305.PubMedCrossrefGoogle Scholar

  • Kutzer C Richter E Oehlmann C Atawodi SE. Effect of nicotine and cotinine on NNK in rats. In: Clarke PBS, Quik M, Adlkofer F, Thurau K, editors. Effects of Nicotine on Biological Systems II. Basel, Boston, Berlin; Birkhäuser Verlag; 1995. p. 385-90.Google Scholar

  • Meger M, Richter E, Zwickenpflug W, Oehlmann C, Hargaden MB, A-Rahim YI, et al. Metabolism and disposition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in rhesus monkeys. Drug Metab Dispos 1999;27:471-8.PubMedGoogle Scholar

  • Hoffmann D, Djordjevic MV, Fan J, Zang E, Glynn T, Connolly GN. Five leading U.S. commercial brands of moist snuff in 1994: assessment of carcinogenic N-nitrosamines. J Natl Cancer Inst 1995;87:1862-9.Google Scholar

  • Brunnemann KD, Hoffmann D. Analytical studies on N-nitrosamines in tobacco and tobacco smoke. Recent Adv Tobacco Sci 1991;17:71-112.Google Scholar

  • D'Andres S Boudoux R Renaud JM, Zuber J. TSNA levels in the main stream smoke of simplified blend prototypes. Beitr Tabaksforsch Int 2003;20(5):331-40.Google Scholar

  • Brunnemann KD, Scott, JC, Hoffmann D. N-Nitrosomorpholine and other volatile N-Nitrosamines in snuff tobacco. Carcinogenesis 1982;3:693-6.PubMedCrossrefGoogle Scholar

  • Hoffmann D, Melikian AA, Wynder EL. Scientific challenges in environmental carcinogenesis. Prev Med 1996;25:14-22.CrossrefPubMedGoogle Scholar

  • Österdahl BG, Slorach SA. Volatile N-nitrosamines in snuff and chewing tobacco on the Swedish market. Fd Chem Toxicol 1983;21:759-62.CrossrefGoogle Scholar

  • Hoffmann D, Djordjevic MV. Chemical composition and carcinogencity of smokeless tobacco. Adv Dent Res 1997;11:322-9.CrossrefGoogle Scholar

  • Nilsson R. A qualitative and quantitative risk assessment of snuff dipping. Regul Toxicol Pharmacol 1998;28:1-16.CrossrefPubMedGoogle Scholar

  • Hoffmann D, Harley NH, Fisenne I, Adams JD, Brunnemann. Carcinogemnic agents in snuff. J Natl Cancer Inst 1986;76:435-7.PubMedGoogle Scholar

  • Hecht SS. Recent studies on the mechanism of bioactivation and detoxification of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) a tobacco-specific lung carcinogen. Crit Revs Toxicol 1996;26:163-81.CrossrefGoogle Scholar

  • Hecht SS, Carmella SG, Foiles PG, Murphy SE. Biomarkers for human uptake and metabolic activation of tobacco-specific nitrosamines. Cancer Res 1994;54(7 Suppl):1912-7.Google Scholar

  • Schildt E-B, Erikssson M, Hardell L, Magnusson A. Oral snuff, smoking habits, and alcohol consumption in relation to oral cancer in a Swedish case-control study. Int J Cancer 1998;77:341-6.CrossrefGoogle Scholar

  • International Agency for Research on Cancer. Cancer Incidence in Five Continents. Vol. 6. IARC Sci Publ No. 120. Lyon: World Health Organization; 1992.Google Scholar

  • Accortt NA, Waterbor JW, Beall C, Howard G. Cancer incidence among a cohort of smokeless tobacco users (United States). Cancer Causes Control 2005;16(9):1107-15.CrossrefPubMedGoogle Scholar

  • Directive 2001/37/EC of the European Parliament and the Council of 5 June 2001 on the approximation of the laws, regulations and administrative provisions of the Member States concerning the manufacture, presentation and the sale of tobacco products. Off J Eur Com L 2001;194/27.Google Scholar

  • Bofetta P, Aagnes B, Weiderpass E, Andersen A. Smokeless tobacco use and risk of cancer of the pancreas and other organs. Int J Cancer 1995;114:992-5. [Comments by: Nilsson R. Possible carcinogenicity of smokeless tobacco. Rutqvist LE, Lewin F. Flawed methods. Ramström L. Smokeless tobacco use and risk of cancer of the pancreas and other organs by Boffetta et al. Rodu B, Cole P. A deficient study of smokeless tobacco use and cancer. Response by Boffetta et al. Int J Cancer Oct. 4 [Epub ahead of print].Google Scholar

  • Stratton K, Shetty P, Wallace R, Bondurant S, editors. Clearing the Smoke. Committee to Assess the Science Base for Tobacco Harm Reductio. Board of Health Promotion and Disease Prevention. Institute of Medicine. Washington (DC): National Academy Press; 2001. p. 301.Google Scholar

  • Royal College of Physicians of London. Protecting smokers, saving lives. A report from the Tobacco Advisory Group. London: Royal College of Physicians; 2002.Google Scholar

  • Boyle P, Gray N. The future of the nicotine-addiction market. Lancet 2003;362:845-6.PubMedGoogle Scholar

  • Vainio H, Weiderpass E. Smokeless tobacco: harm reduction or nicotine overload? Eur J Cancer Prev 2003;12(2):89-92.PubMedCrossrefGoogle Scholar

  • Bolinder G, Alfredsson L, Englund A, de Faire U. Smokeless tobaco use and increased cardiovascular mortality among Swedish construction workers. Am J Publ Health 1994;84:399-404.CrossrefGoogle Scholar

  • Lewin F, Norell SE, Johansson H, Gustavsson P, Wennerberg J, Björklund A, et al. Smoking tobacco, oral snuff, and alcohol in the etiology of squamous cell carcinoma of the head and neck. A population based case-referent study in Sweden. Cancer 1998;82:1367-75.CrossrefPubMedGoogle Scholar

  • Castonguay A, Stoner GD, Schut HA, Hecht SS. Metabolism of tobacco-specific N-nitrosamines by cultured human tissues. Proc Natl Acad Sci USA 1983;80(21):6694-7.CrossrefGoogle Scholar

  • Richter E, Tricker AR. Effect of nicotine, cotinine and phenethyl isothiocyanate on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in the Syrian golden hamster. Toxicology 2002;179:95-103.CrossrefPubMedGoogle Scholar

  • Hecht SS, Lin D, Chen CB. Comprehensive analysis of urinary metabolites of N'-nitrosonornicotine. Carcinogenesis 1981;2:833-8.PubMedCrossrefGoogle Scholar

  • Eliasson M, Asplund K, Nasic S, Rodu B. Influence of smoking and snus on the prevalence and incidence of type 2 diabetes amongst men: the northern Sweden MONICA study. J Intern Med 2004;256(2):101-10.PubMedCrossrefGoogle Scholar

  • Lewis SJ, Cherry NM, Niven RM, Barber PV, Povey AC. Associations between smoking, GST genotypes and 7-methylguanine levels in DNA extracted from bronchial lavage cells. Mutat Res 2004;559(1-2):11-8.Google Scholar

  • Nitenberg A, Antony I. Effects of nicotine gum on coronary vasomotor responses during sympathetic stimulation in patients with coronary artery stenosis. J Cardiovasc Pharmacol 1999;34(5):694-9.PubMedCrossrefGoogle Scholar

  • Ludviksdottir D, Blondal T, Franzon M, Gudmundsson TV, Sawe U. Effects of nicotine nasal spray on atherogenic and thrombogenic factors during smoking cessation. J Intern Med 1999;246(1):61-6.PubMedCrossrefGoogle Scholar

  • Persson PG, Carlsson S, Svanström L, Östenson CG, Efendic S, Grill V. Cigarette smoking, oral moist snuff use and glucose intolerance. J Intern Med 2000;248(2):103-10.CrossrefPubMedGoogle Scholar

  • Peterson LA, Liu XK, Hecht SS. Pyridyloxobutyl DNA adducts inhibit the repair of O6-methylguanine. Cancer Res 1993;53(12):2780-5.Google Scholar

  • Thornton A, Lee P, Fry J. Differences between smokers, exsmokers, passive smokers and non-smokers. J Clin Epidemiol 1994;47:1143-62.CrossrefGoogle Scholar

  • Smith GBJ, Bend JR, Bedard LL, Reid KR, Petsikas D, Massey TE. Biotransformation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in peripheral human lung microsomes. Drug Metab Dispos 2003;31:1134-41.PubMedCrossrefGoogle Scholar

  • Richter E, Lassnack B, Tricker AR. Interspecies differences in N'-nitrosonornicotine metabolism by precision-cut rodent lung slices. Proceedings of the 15th International Symposium Microsomes and Drug Oxidation;2004 July 4-9; Mainz, Germany [cited February 1, 2006]. Available from: http://www.mdo2004.de/

  • Griciute L, Castegnaro M, Bereziat JC, Cabral JRP. Influence of ethyl alcohol on the carcinogenic activity of N-nitrosonornicotine. Cancer Lett 1986;31:267-75.PubMedCrossrefGoogle Scholar

  • IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. Wood dust and formaldehyde, Vol. 65. Lyon: World Health Organization; 1995.Google Scholar

  • Public Heath Status Reports, 2005. Stockholm: Swedish National Agency for Public Health 2005. p. 24-5 [in Swedish].Google Scholar

  • Benowitz NL Gourlay SG. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol 1997;29(7):1422-31.CrossrefGoogle Scholar

  • Greenland S, Satterfield MH, Lanes SF. A meta-analysis to assess the incidence of adverse effects associated with the transdermal nicotine patch. Drug Saf 1998;18(4):297-308.PubMedCrossrefGoogle Scholar

  • Joseph AM, Norman SM, Ferry LH, Prochazka AV, Westman EC, Steele BG, et al. The safety of transdermal nicotine as an aid to smoking cessation in patients with cardiac disease. N Engl J Med 1996;335(24):1792-8.CrossrefGoogle Scholar

  • Stegmayr B, Johansson I, Huhtasaari F, Moser U, Asplund K. Use of smokeless tobacco and cigarettes - effects on plasma levels of anti-oxidant vitamins. Int J Vitam Nutr Res 1983;63:195-200.Google Scholar

  • Allen SS, Hatsukami D, Gorsline J. Cholesterol changes in smoking cessation using the transdermal nicotine system. Transdermal Nicotine Study Group. Prev Med 1994;3(2):190-6.CrossrefGoogle Scholar

  • Winn DM, Blot WJ, Shy CM, Pickle L W, Toledo A, Fraumeni JF. Snuff dipping and oral cancer among women in the southern United States. New Engl J Med 1981;304:745-9.CrossrefGoogle Scholar

  • Idris AM, Prokopczyk B, Hoffmann D. Toombak: a major risk factor for cancer of the oral cavity in Sudan. Prev Med 1994;23:832-9.CrossrefGoogle Scholar

  • Littlefield NA, Farmer JH, Gaylor DW, Sheldon WG. Effects of dose and time in a long-term, low- dose carcinogenic study. J Environ Pathol Toxicol 1979;3:17-34.Google Scholar

  • von Bahr B., Ehrenberg L., Scalia-Tomba GP, Säfwenberg JO. Investigation of various dose-response models. Report to the Swedish Cancer Committee. Ministry of Social Affairs Ds S 1984:5, Suppl. 9 [in Swedish].Google Scholar

  • Romert L, Jansson T, Curvall M, Jenssen D. Screening for agents inhibiting the mutagenicity of extracts and constituents of tobacco products. Mutat Res 1994;322(2):97-110PubMedCrossrefGoogle Scholar

  • Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 2000;32(3-4):395-411.PubMedCrossrefGoogle Scholar

  • Nilsson R, Natarajan AT, Hartwig A, Dulout F, De la Rosa ME, Vahter M. Clastogenic effects and influence of inorganic arsenic on DNA-repair in mammalian systems. In: Sarkar B, editor. Metals and Genetics. Kluwer Academic/Plenum Publishers; 1999. pp. 21-40.Google Scholar

  • Andersson, G, Axéll, T. The clinical appearance of lesions associated with the use of loose and portion-bag packed Swedish moist snuff: a comparative study. J Oral Pathol Med 1989;18;2-7.PubMedGoogle Scholar

  • Axéll T. Oral mucosal changes related to smokeless tobacco usage: Research findings in Scandinavia. Oral Oncol. Europ J Cancer 1993;29B, 299-302.CrossrefGoogle Scholar

  • Vigneswaran N, Dent M, Tilashalski K, Rodu B, Cole P. Tobacco use and cancer; A reappraisal. Oral Surg Med Pathol 1995;80:178-82.Google Scholar

  • Waldron CA, Schaffer G. Leukoplakia revisited: a clinico-pathologic study of 3256 oral leukoplakias. Cancer 1975;36:1386-92.CrossrefGoogle Scholar

  • Axéll T, Mörnstad H, Sundström B. The relation of the clinical picture to the histopathology of snuff dipper's lesion in a Swedish population. J Oral Pathol 1976;5:229-36.CrossrefGoogle Scholar

  • Smith JF. Snuff dipper's lesions: a ten-year follow-up. Arch Otolaryngol 1975;101:276-7.CrossrefGoogle Scholar

  • Larsson Å, Axell T, Andersson G. Reversibility of snuff dippers' lesion in Swedish moist snuff users: a clinical and histologic follow-up study. J Oral Pathol Med 1991;20(6):258-64.PubMedCrossrefGoogle Scholar

  • Doll R, Peto R. The Causes of Cancer: Quantitative Estimates of Avoidable Risks of Cancer in the United States Today. J Natl Cancer Inst 1981;66:1193-308.Google Scholar

  • Swedish Cancer Committee. Cancer-Causes and Prevention, Report to the Ministry of Social Affairs from the Cancer Committee. London: Taylor and Francis; 1992.Google Scholar

  • World Cancer Research Fund. Food, Nutrition and the Prevention of Cancer: a Global Perspective. Washington (DC): American Institute for Cancer Research; 1997.Google Scholar

  • Trichopoulou A, Lagiou P, Kuper H, Trichopoulos D. Cancer and Mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev 2000;9(9):869-73.PubMedGoogle Scholar

  • Hecht SS, Rivenson A, Braley J, DiBello J, Adamas JD, Hoffmann D. Induction of oral cavity tumors in F344 rats by tobacco-specific nitrosamines and snuff. Cancer Res 1986;46:4162-6.Google Scholar

  • Belinsky SA, Devereux TR, Maronpot RR, Stoner GD Anderson MW. Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mouse lung treated with nitrosamines. Cancer Res 1989;49:5305-11.PubMedGoogle Scholar

  • Ronai ZA, Gradia S, Peterson LA, Hecht SS. G to A transitions and G to T transversions in codon 12 of the Ki-ras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosoamino)-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis 1993;14:2419-22.CrossrefGoogle Scholar

  • Pletsa V, Troungos C, Souliotis VL Kyrtopoulos SA. Comparative study of mutagenesis by O6-methylguanine in the human Ha-ras oncogene in E. coli and in vitro. Nucleic Acids Res 1994;22:3846-53.CrossrefGoogle Scholar

  • Jansen JG, de Groot AJ, van Teijlingen CM, Tates AD, Vrieling H, van Zeeland AA. Induction of hprt gene mutations in splenic T-lymphocytes from the rat exposed in vivo to DNA methylating agents is correlated with formation of O6-methylguanine in bone marrow and not in the spleen. Carcinogenesis 1996;17(10):2183-91.CrossrefGoogle Scholar

  • Sturla SJ, Scott J, Lao Y, Hecht SS, Villalta PW. Mass spectrometric analysis of relative levels of pyridyloxobutylation adducts formed in the reaction of DNA with a chemically activated form of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Chem Res Toxicol 2005;18(6):1048-55.CrossrefPubMedGoogle Scholar

  • Belinsky SA, White CM, Boucheron JA, Richardson FC, Swenberg JA, Anderson MW. Accumulation and persistence of DNA adductsin respiratory tissue of rats following multiple administrations of the tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. CancerRes 1986;46:1280-4.Google Scholar

  • Belinsky S, Fole, JF, White CM, Anderson MW, Maronpot RR. Dose-response relationship between the formation of O6-methylguanine in Clara cells and induction of pulmonary neoplasia in the rat by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 1990;50:3772-80.Google Scholar

  • Belinsky SA, Walker VE, Maronpot RR, Swenberg JA, Anderson MW. Molecular dosimetry of DNA adduct formation and cell toxicity in rat nasal mucosa following exposure to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and their relationship to induction of neoplasia. Cancer Res 1987; 47:6058-65.Google Scholar

  • Belinsky SA, White CM, Boucheron JA, Richardson FC, Swenberg JA, Anderson MW. Accumulation and persistence of DNA adducts in respiratory tissue of rats following multiple administrations of the tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 1986;46:1280-4.Google Scholar

  • Tan HB, Swann PF, Chance EM. Kinetic analysis of the coding properties of O6-methylguanine in DNA-the crucial role of the conformation of phosphodiester bond. Biochemistry 1994;33:5335-46.CrossrefGoogle Scholar

  • Oesch F, Herrero ME, Hengstler JG, Lohmann M, Arand M. Metabolic detoxification: implications for thresholds. Toxicol Pathol 2000;28(3):382-7.CrossrefPubMedGoogle Scholar

  • Haglund J, Henderson AP, Golding BT, Törnqvist M. Evidence for phosphate adducts in DNA from mice treated with 4-(N-Methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Chem Res Toxicol 2002;15(6):773-9.PubMedCrossrefGoogle Scholar

  • Trushin N, Rivenson A, Hecht SS. Evidence supporting the role of DNA pyridyloxobutylation in rat nasal carcinogenesis by tobacco-specific nitrosamines. Cancer Res 1994;54:1205-11.PubMedGoogle Scholar

  • Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91(14):1194-210.CrossrefPubMedGoogle Scholar

  • Carmella SG, Akerkar S, Hecht SS. Metabolites of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in smokers' urine. Cancer Res 1993;53(4):721-4.PubMedGoogle Scholar

  • Rivenson A, Hoffmann D, Prokopczyk B, Amin S, Hecht SS. Induction of lung and exocrine pancreas tumors in F344 rats by tobacco specific and areca-derived N-nitrosamines. Cancer Res 1988;48:6912-17.Google Scholar

  • Hecht SS, Villalta PW, Sturla SJ, Cheng G, Yu N, Upadhyaya P, et al. Identification of O2-substituted pyrimidine adducts formed in reactions of 4-(acetoxymethylnitros-amino)-1-(3-pyridyl)-1-butanone and 4-(acetoxymethylnitros- amino)-1-(3-pyridyl)-1-butanol with DNA. Chem Res Toxicol 2004;17(5):588-97.PubMedCrossrefGoogle Scholar

  • Kresty LA, Carmella SG, Borukhova A, Akerkar SA, Gopalakrishnan R, Harris RE, et al. Metabolites of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in the urine of smokeless tobacco users:relationship between urinary biomarkers and oral leukoplakia. Cancer Epidemiol Biomarkers Prev 1996;5(7):521-5.PubMedGoogle Scholar

  • Harris, JE. Incomplete compensation does not imply reduced harm: Yields of 40 smoke toxicants per mg nicotine in regular filter versus low-tar cigarettes in the 1999 Massachusetts benchmark study. Nicotine Tob Res 2004;6(5):797-807.Google Scholar

  • Hewett CF. Nitrosamine levels in German brands. Rep. No. RD. 2094. Restricted. 5.10.1987. British American Tobacco Co. Tobacco documents online. Tobaccodocuments.org.Google Scholar

  • Andersson G, Björnberg G, Curvall M. Oral mucosal change and nicotine disposition in users of Swedish smokeless tobacco products: a comparative study. J Oral Pathol Med 1994;23:161-7.CrossrefGoogle Scholar

  • Davidson IWF, Parker JC, Beliles RP. Biological basis for extrapolation across mammalian species. Regul Toxicol Pharmacol 1986;6:211-37.PubMedCrossrefGoogle Scholar

  • Segerbäck D, Osterman-Golkar S, Molholt B, Nilsson R. In vivo tissue dosimetry as a basis for cross-species extrapolation in cancer risk assessment of propylene oxide. Regulatory Toxicol Pharmacol 1994;20:1-14.CrossrefGoogle Scholar

  • Kaina B, Heindorff K, Aurich O. O6-methylguanine, but not 7-methylguanine or N3-methyladenine, induces gene mutations, sister-chromatid exchanges and chromosomal aberrations in Chinese hamster cells. Mutat Res 1983;108(1-3):279-92.Google Scholar

  • Saffhill R, Margison GP, O'Connor PJ. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta 1985;823:111-45.PubMedGoogle Scholar

  • Wood R D. DNA repair in eukaryotes. Ann Rev Biochem. 1996;65:135-67CrossrefGoogle Scholar

  • Liu L, Castonguay A, Gerson SL. Lack of correlation between DNA methylation and hepatocarcinogenesis in rats and hamsters treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 1992;13(11):2137-40.CrossrefPubMedGoogle Scholar

  • Vogel E, Natarajan AT. The relation between reaction kinetics and mutagenic action of monofunctional alkylating agents in higher eukaryoteic systems-Interspecies comparison. In: e Serres F, Hollander A, editors. Chemical Mutagens, Principles and Methods of Their Detection. Vol. 7. New York: Plenum Press; 1982. p. 295-336.Google Scholar

  • Peterson LA, Hecht SS. O6-Methylguanine is a critical determinant of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone tumorigenesis in A/J mouse lung. Cancer Res 1991;51:5557-64.Google Scholar

  • Calleja F, Jansen JG, Vrieling H, Laval F, van Zeeland AA. Modulation of the toxic and mutagenic effects induced by methyl methane-sulfonate in Chinese hamster ovary cells by overexpression of the rat N-alkylpurine-DNA glycosylase. Mutat Res 1999;425:185-94.PubMedCrossrefGoogle Scholar

  • Swenberg JA, Bedell MA, Billings KC, Umbenhauer DR, Pegg AE. Cell specific differences in O6-alkylguanine DNA repair activity during continuous carcinogen exposure. Proc Natl Acad Sci USA 1982;79:5499-502.CrossrefGoogle Scholar

  • Zak P, Kleibl K, Laval F. Repair of O6-methylguanine and O4-methylthymine by the human and rat O6-methylguanine-DNA methyl-transferases. J Biol Chem 1994;269(1):730-3.Google Scholar

  • Pegg AE, Hui G. Removal of methylated purines from rat liver DNA after administration of dimethylnitrosamine. Cancer Res 197838(7):2011-7.Google Scholar

  • Godtfredsen NS, Holst C, Prescott E, Vestbo J, Osler M. Smoking Reduction, Smoking Cessation, and Mortality: A 16-year Follow-up of 19 732 Men and Women. Am J Epidemiol 2002;56:994-1001.CrossrefGoogle Scholar

  • Tobacco or Health: A Global Status Report; Country Profiles by Region [cited 2006 Feb 1,]. World Health Organization. Available from: http://www.cdc.gov/tobacco/who/whoeupro.htm

  • Godtfredsen NS, Vestbo J, Osler M, Prescott E. Risk of hospital admission for COPD following smoking cessation and reduction: A Danish population study. Thorax 2002;57:967-72.CrossrefPubMedGoogle Scholar

  • Lundbäck B, Lindberg A, Lindström M, Ronmark E, Jonsson AC, Jonsson E, et al. Obstructive Lung Disease in Northern Sweden Studies. Not 15 but 50% of smokers develop COPD? Report from the Obstructive Lung Disease in Northern Sweden Studies. Respir Med 2003;97:115-22.CrossrefGoogle Scholar

  • Scanlon PD, Connett JE, Waller LA, Murray D, Altose MD, Bailey WC, et al. Smoking Cessation and Lung Function in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2000;161:381-90.PubMedCrossrefGoogle Scholar

  • Kademani D, Bell RB, Bagheri S, Holmgren E, Dierks E, Potter B, et al. Prognostic factors in intraoral squamous cell carcinoma: the influence of histologic grade. J Oral Maxillofac Surg 2005;63(11):1599-605.Google Scholar

  • British Thoracic Society. Guidelines on the management of chronic obstructive pulmonary disease. Thorax 1997;52 (Suppl 5):S1-28.Google Scholar

  • National Heart Lung and Blood Institute. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Bethesda (ML): National Heart, Lung and Blood Institute; 2001.Google Scholar

  • Parker AS, Cerhan JR, Janney C.A, Lynch CF, Cantor KP. Smoking cessation and renal cell carcinoma. Ann Epidemiol 2003;13:245-51.CrossrefPubMedGoogle Scholar

  • Lin Y, Tamakoshi A, Kawamura T, Inaba Y, Kikuchi S, Motohashi Y, et al. JACC Study Group. Japan Collaborative Cohort. A prospective cohort study of cigarette smoking and pancreatic cancer in Japan. Cancer Causes Control 2002;13:249-54.CrossrefGoogle Scholar

  • Belinsky SA, Dolan ME, White CM, Maronpot RR, Pegg AE, Anderson MW. Cell specific differences in O6-methylguaine-DNA methyltransferase activity and removal of O6-methylguanine in rat pulmonary cells. Carcinogenesis 1988;9:2053-8.CrossrefGoogle Scholar

  • Murphy SE, Palomino A, Hecht SS, Hoffmann D. Dose-response study of DNA and hemoglobin adduct formation by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in F334 rats. Cancer Res 1990;50:5446-52.Google Scholar

  • Huhtasaari F, Lundberg V, Eliasson M, Janlert U, Asplund K. Smokeless tobacco as a possible risk factor for myocardial infarction: a population-based study in middle-aged men. J Am Coll Cardiol 1999;34(6):1784-90.PubMedCrossrefGoogle Scholar

  • Asplund K, Nasic S, Janlert U, Stegmayr B. Smokeless tobacco as a possible risk factor for stroke in men: a nested case-control study. Stroke 2003;34(7):1754-9.CrossrefGoogle Scholar

  • Eliasson M, Asplund K, Evrin PE, Lundblad D. Relationship of cigarette smoking and snuff dipping to plasma fibrinogen, fibrinolytic variables and serum insulin. The Northern Sweden MONICA study. Atherosclerosis 1995;113:41-53.PubMedCrossrefGoogle Scholar

  • Wennmalm Å., Benthin G, Granström EF, Persson L, Petersson AS, Winell S. Relation between tobacco use and urinary excretion of thromboxane A2 and prostacyclin metabolites in young men. Circulation 1991;83:1698-704.CrossrefPubMedGoogle Scholar

  • Godtfredsen NS, Osler M, Vestbo J, Andersen I, Prescott E. Smoking reduction, smoking cessation, and incidence of fatal and non-fatal myocardial infarction in Denmark 1976-1998: a pooled cohort study. J Epidemiol Community Health 2003;57;412-16.Google Scholar

  • Huhtasaari F, Asplund Wester PO. Cardiovascular risk factors in the Northern Sweden MONICA study. Acta Med Scand 1988;224:99-108.PubMedGoogle Scholar

  • Huhtasaari F, Asplund K, Lundberg V, Stegmayr B, Wester PO. Tobacco and myocardial infarction: is snuff less dangerous than cigarettes? Brit Med J 1992;305:1252-6.CrossrefGoogle Scholar

  • Ashley F, Kannel WB, Sorlie, PD, Masson R. Pulmonary function: relation to aging, cigarette habit, and mortality. Ann Intern Med 1975;82:739-45.CrossrefPubMedGoogle Scholar

  • Pfaffenberger RS, Hyde RT, Wing AL, Hsieh C. Cigarette smoking and cardiovascular diseases. In: Zaridze DG, Peto R, editors. Tobacco: A Major International Health Hazard. No. 74. Lyon: International Agency for Research on Cancer; 1986.Google Scholar

  • Couch R, Ehrenberg L, Magnusson AL, Nilsson R, de la Rosa ME, Törnqvist M. In vivo dosimetry of ethylene oxide and propylene oxide in the Cynomolgus monkey. Mutat. Res 1986;357;17-23.Google Scholar

  • Hecht SS, Carmella SG, Trushin N, Foiles-Lin D, Rubin JM, Chung FL. Investigations on the molecular dosimetry of tobacco specific nitrosamines. IARC Sci Pub No. 84. Lyon: International Agency for Research on Cancer; 1987. p. 423-9.Google Scholar

  • EUROGAST. The EUROGAST Study Group O6-Methylguanine in blood leucocyte DNA: an association with the geographic prevalence of gastric cancer and with low levels of serum pepsinogen A, a marker of severe chronic atrophic gastritis. Carcinogenesis 1994;15:1815-20.Google Scholar

  • Foiles PG, Miglietta LM, Akerkar SA, Everson RB, Hecht SS. Detection of O6-methyldeoxyguanosine in human placental DNA. Cancer Res 1988;48(15):4184-8.Google Scholar

  • Kang H, Konishi C, Kuroki T, Huh N. Detection of O6-methylguanine, O4-methylthymine and O4-ethylthymine in human liver and peripheral blood leukocyte DNA. Carcinogenesis 1995;16(6):1277-80.CrossrefGoogle Scholar

  • Haque K, Cooper DP, van Delft J H, Lee S M, Povey AC. Accurate and sensitive quantitation of 7-methyldeoxyguanosine-3'-monophosphate by 32P-postlabeling and storage-phosphor imaging. Chem Res Toxicol 1997;10:660-6.CrossrefGoogle Scholar

  • Povey AC, Hall CN, Badawi AF, Cooper DP, O'Connor PJ. Elevated levels of the pro-carcinogenic adduct, O(6)-methylguanine, in normal DNA from the cancer prone regions of the large bowel. Gut 2000;47(3):362-5.PubMedCrossrefGoogle Scholar

  • Georgiadis P, Samoli E, Kaila S, Katsouyanni K, Kyrtopoulos SA. Ubiquitous presence of O6-methylguanine in human peripheral and cord blood DNA. Cancer Epidemiol Biomarkers Prev 2000;9:299-305.PubMedGoogle Scholar

  • Mustonen R, Hemminki K. 7-Methylguanine levels in DNA of smokers' and non-smokers' total white blood cells, granulocytes and lymphocytes. Carcinogenesis 1992;13(11):1951-55.CrossrefGoogle Scholar

  • Blömeke B, Greenblatt MJ, Doan VD, Bowman ED, Murphy SE, Chen CC, et al. Distribution of 7-alkyl-2'-deoxuguanosine adduct levels in human lung. Carcinogenesis 1996;17:741-8.PubMedGoogle Scholar

  • Hecht SS, Kagan SS, Kagan M, Carmella SG. Quantification of 4-hydroxy-1-(3-pyridyl)-1-butanone released from human haemoglobin as a dosimeter for exposure to tobacco-specific nitrosamines. In: O'Neill IK, Chen J, Bartsch H, editors. Relevance to Human Cancer of N-Nitroso Compounds, Tobacco Smoke and Mycotoxins. IARC Sci. Publ 1991;105:113-8.Google Scholar

  • Brunnemann KD, Qi J, Hoffmann D. Aging of oral moist snuff and the yields of tobacco-specific N-nitrosamines (TSNA): Progress report. Valhalla (NY): American Health Foundation; 2001.Google Scholar

  • Bates C, Fagerström K Jarvis M, Kunze M, McNeill A, Ramström L. European Union Policy on Smokeless Tobacco. Tobacco Control 2003;12:360-7.PubMedCrossrefGoogle Scholar

  • Brennan P, Bogillot O, Greiser E, Chang-Claude J, Wahrendorf J, Cordier S, et al. The contribution of cigarette smoking to bladder cancer in women (pooled European data). Cancer Causes Control 2001;12:411-7.PubMedCrossrefGoogle Scholar

  • Ehrenberg L. Estimation of Cancer risk due to passive smoking. Appendix DsS 1984:5.C Stockholm:Cancer Committee; 1984 [in Swedish].Google Scholar

  • Hölzle D, Schlöbe D, Richter E, Ostermeier-Hatz D, von Meyer L, Tricker AR. 4-Hydroxy-1- (3-pyridyl)-1-butanone (HPB) releasing DNA adducts in lung, esophagus and cardia of sudden death victims. 2nd ed. Proc Am Ass Cancer Res 2003;44:1281-2.Google Scholar

  • Soejima H, Zhao W, Mukai T. Epigenetic silencing of the MGMT gene in cancer. Biochem Cell Biol 2005;83(4):429-37.CrossrefPubMedGoogle Scholar

  • Crump K. An improved procedure for low-dose carcinogenic risk assessment from animal data. J Environ Pathol Toxicol 1982; 5:339-48.Google Scholar

  • Falter B, Kutzer C, Richter E. Biomonotoring of hemoglobin adducts: aromatic amines and tobacco specific nitrosamines. Clin Invest 1994;72:364-71.Google Scholar

  • Richter E, Zwickenpflug W, Wilp J, Hölzle D, Schlöbe D, Tyroller S, et al. DNA adducts in human esophageal mucosa: The role of tobacco-specific nitrosamines and dietary myosmine. 2006 [manuscript in press].Google Scholar

  • Atawodi SE, Lea S, Nyberg F, Mukeria A, Constantinescu V, Ahrens W, et al. 4-Hydroxy-1-(3-pyridyl)-1-butanone-hemoglobin adducts as biomarkers of exposure to tobacco smoke: validation of a method to be used in multicenter studies. Cancer Epidemiol Biomarkers Prev 1998;7(9):817-21.Google Scholar

  • Foiles PG, Akerkar SA, Carmella SG, Kagan M, Stoner GD, Resau JH, et al. Mass spectrometric analysis of tobacco-specific nitrosamine-DNA adducts in smokers and nonsmokers. Chem Res Toxicol 1991;4(3):364-8.CrossrefPubMedGoogle Scholar

  • Schlöbe D, Höltzle D, Richter E, Ostermeier-Hatz D, von Meyer L, Lindner M, et al. Determination of tobacco-specific nitrosamine DNA adducts in human tissues. Proc Am Ass Cancer Res 2002;43:346.Google Scholar

About the article


Published Online: 2006-06-13

Published in Print: 2006-06-01


Citation Information: International Journal of Occupational Medicine and Environmental Health, ISSN (Online) 1896-494X, ISSN (Print) 1232-1087, DOI: https://doi.org/10.2478/v10001-006-0004-y.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in