Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Occupational Medicine and Environmental Health

IMPACT FACTOR 2014: 0.695
5-year IMPACT FACTOR: 1.332

SCImago Journal Rank (SJR) 2014: 0.370
Source Normalized Impact per Paper (SNIP) 2014: 0.554
Impact per Publication (IPP) 2014: 1.071

Open Access
See all formats and pricing
More options …

The influence of ambient temperature on power at anaerobic threshold determined based on blood lactate concentration and myoelectric signals

Aleksander Tyka / Tomasz Pałka / Anna Tyka / Tomasz Cisoń / Zbigniew Szyguła
Published Online: 2009-04-27 | DOI: https://doi.org/10.2478/v10001-009-0005-8

The influence of ambient temperature on power at anaerobic threshold determined based on blood lactate concentration and myoelectric signals

Objectives: To compare the mechanical power and physiological parameters in males at the lactate (LAAT) and integrated electromyographic (IEMGAT) anaerobic thresholds during exercise testing at 23°C, 31°C and 37°C. Materials and Methods: Fifteen men aged 21.9±1.80 years performed an incremental exercise test on a cycle ergometer at pedal frequency of 60 rpm. The test began at the power output of 120 W which was increased by 30 W every 3 min. Heart rate, oxygen uptake, carbon dioxide in expired air and minute ventilation were monitored. Venous blood samples were collected at 30 s before termination of each 3-min stage of test to determine the lactate anaerobic threshold. IEMGAT for vastus lateralis (VL) and rectus femoris (RF) muscles were regarded as the inflection point at which a non-linear increase in IEMGAT occurred. Results: IEMGAT for VL and RF were similar for all the three temperatures. IEMGAT (VL and RF) correlated closely with LAAT at ambient temperatures of 23°C (r = 0.91), 31°C (r = 0.96) and 37°C (r = 0.97). Repeated measures analysis of variance (ANOVA) revealed that the mechanical power at LAAT and IEMGAT was higher at 23°C (202±26.5 W vs. 205±22.9 W) than at 31°C (186±20.2 W vs. 186.2±20.2 W) and 37°C (175.5±25.2 W vs. 175.3±20.0 W) for LAAT and IEMGAT respectively (p < 0.01). Conclusions: Higher ambient temperature induced a decrease in the mechanical power at which the anaerobic threshold occurred. The high correlation between LAAT and IEMGAT (r = 0.91-0.97) indicated that IEMGAT can be used as a practical and reliable, non-invasive method for assessment of the anaerobic threshold.

Keywords: Ambient temperature; Anaerobic threshold; Lactate threshold; Electromyographic threshold

  • Romer LM, Bridge MW, McConnell AK, Jones DA. Influence of environmental temperature on exercise-induced inspiratory muscle fatigue.Eur J Appl Physiol 2004;91:656-63.PubMedCrossrefGoogle Scholar

  • Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man.Med Sci Sports Exerc 1997;29(9):1240-9.CrossrefPubMedGoogle Scholar

  • Maughan RJ, Shirreffs SM, Watson P. Exercise, heat, hydration and the brain.J Am Coll Nutr 2007;26:604S-612S.CrossrefWeb of ScienceGoogle Scholar

  • Tyka A, Pałka T, Tyka A, Cisoń T, Szyguła Z. The influence of various environmental temperatures on some physiological parameters' level in men during graded exercise.Ann Univ Mariae Curie-Sklodowska [Med] 2007;LXII, Suppl XVIII(6):440-3.Google Scholar

  • Tyka A, Żuchowicz A, Kubica R. Effect of ambient temperature on mechanical power at anaerobic threshold.Med Sci Sports Exerc 2000;32(5):155.Google Scholar

  • Wasserman K, Beaver WL, Whipp BJ. Gas exchange theory and the lactic acidosis (anaerobic threshold).Circulation 1990;81(Suppl II):14-30.Google Scholar

  • Glass SC, Knowlton RG, Sanjabi PB, Sullivan JJ. Identifying the electromyographic threshold using different muscle during incremental cycling exercise.J Sports Med Phys Fitness 1998;38:47-52.PubMedGoogle Scholar

  • Tyka A, Żuchowicz A, Kubica R, Kita B. Relationship between lactate and ventilatory thresholds in men during incremental exercise performed in different ambient temperatures. Sport Science 1999 in Europe, 4th.Ann Congr Eur Coll Sport Sci 1999;633.Google Scholar

  • Kruk B, Pekarinnen H, Titkov EK, Hänninen O. Effect of caffeine: Effect of caffeine ingestion on lactate and EMG threshold in men during graded exercise at room temperature and cold environment.Biol Sport 2000;17(1):3-11.Google Scholar

  • Hughson RL, Weisiger KH, Swanson GD. Blood lactate concentration increases as a continuous function in progressive exercise.J Appl Physiol 1987;6(5):1975-81.Google Scholar

  • Svedahl K, Macintosh BR. Anaerobic threshold: The Concept and Methods of Measurement.Can J Physiol 2003;28(2): 299-323.Google Scholar

  • Lucia A, Sanchez O, Carvajal A, Chicharro JL. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography.Br J Sports Med 1999;33(3):178-85.CrossrefPubMedGoogle Scholar

  • Matsumoto T, Ito K, Moritani T. The relationship between anaerobic threshold and electromyographic fatigue threshold in college women.Eur J Appl Physiol 1991;63:1-5.CrossrefGoogle Scholar

  • Chwalbińska-Moneta J, Kaciuba-Uściłko H, Krysztofiak H, Ziemba A, Krzemiński B, Kruk B, et al. Relationship between EMG, blood lactate and plasma catecholamine thresholds during graded exercise in men.J Physiol Pharmacol 1998;49(3):433-41.Google Scholar

  • Moritani T, Tanaka H, Yoshida T, Ishii C, Yoshida T, Shindo M. Relationship between myoelectric signals and blood lactate during incremental forearm exercise.Am J Phys Med 1984;63(3):122-32.PubMedGoogle Scholar

  • Helal JN, Guezennec CY, Goubel F. The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach.Eur J Appl Physiol 1987;56:643-9.CrossrefGoogle Scholar

  • Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth.Hum Biol 1988;5:709-23.Google Scholar

  • Wendt D, van Loon L, van Marken Lichtenbelt W. Thermoregulation during exercise in the heat.Sports Med 2007;37(8):669-82.CrossrefWeb of ScienceGoogle Scholar

  • Savard GK, Nielsen B, Łaszczyńska I, Larsen BE, Saltin B. Muscle blood flow is not reduced in humans during moderate exercise and heat stress.J Appl Physiol 1988;64:649-57.PubMedGoogle Scholar

  • Yang AJ. Energy substrate utilization during exercise in extreme environments.Exerc Sport Sci Rev 1990;18:65-117.Google Scholar

  • Nagata A, Muro M, Moritani T, Yoshida T. Anaerobic threshold determination by blood lactate and myoelectric signals.Jpn J Physiol 1981;31(4):585-97.PubMedCrossrefGoogle Scholar

  • Cisoń T, Szyguła Z, Tyka A, Pałka T, Maciejczyk M, Pilch W. Effect of active dehydration on the phosphagen power level in men.Ann Univ Mariae Curie-Sklodowska [Med] 2007:LXIISuppl XVIII(1):406-9 [in Polish].Google Scholar

  • Kubica R, Tyka A, żuchowicz A, Czubała M. Human acclimation to work in warm and humid environments.J Physiol Pharmacol 1996;47(3):515-24.PubMedGoogle Scholar

  • Szyguła Z, Pałka T, Pilch W, Tyka A, Torii M. The influence of training in various environmental temperatures on hematological indices in men. 13th International Congress on Physical Education and Sport Science. Komotini. Greece, 2005.Google Scholar

  • Pałka T, Tyka A, Chwastowski M, Tyka A, Szyguła Z, Cisoń T. An effect of subliminal physical training in two different temperatures of the environment on parameters of maximal and threshold power in men.Postępy Med Lot 2006;2(13):81-7 [in Polish].Google Scholar

  • Pałka T, Tyka A, Maciejczyk M, Bawelski M, Cisoń T, Pilch W, et al. Effect of physical training in two different temperatures on exercise thermoregulation in men.Med Sport Pract 2006;7(4):79-82 [in Polish].Google Scholar

  • Tyka A, Kubica R, Żuchowicz A, Gołąb S, Czubała M, Cherdrungsi P. Exercise thermoregulation in Thai and Polish male subjects.J Physiol Pharmacol 1995;46(2):205-11.PubMedGoogle Scholar

  • Flore P, Threrminarias A, Oddou-Chirpaz MF, Quirion F. Influence of moderate cold exposure on blood lactate during incremental exercise.Eur J Appl Physiol 1992;64:213-7.CrossrefGoogle Scholar

  • Sawka MN. Body fluid responses and hypohydration during exercise-heat-stress. In: Pandolf KB, Sawka NM, Gonzalez RR, editors. Human Physiology and Environmental Medicine at Terrestrial Extremes.Carmel: Cooper Publishing Group; 1986. p. 227-65.Google Scholar

About the article

Published Online: 2009-04-27

Published in Print: 2009-01-01

Citation Information: International Journal of Occupational Medicine and Environmental Health, Volume 22, Issue 1, Pages 1–6, ISSN (Online) 1896-494X, ISSN (Print) 1232-1087, DOI: https://doi.org/10.2478/v10001-009-0005-8.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in