Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Occupational Medicine and Environmental Health

IMPACT FACTOR 2014: 0.695
5-year IMPACT FACTOR: 1.332

SCImago Journal Rank (SJR) 2014: 0.370
Source Normalized Impact per Paper (SNIP) 2014: 0.554
Impact per Publication (IPP) 2014: 1.071

Open Access
See all formats and pricing
More options …

The essential oil of turpentine and its major volatile fraction (α- and β-pinenes): a review

Beatrice Mercier / Josiane Prost / Michel Prost
Published Online: 2010-03-02 | DOI: https://doi.org/10.2478/v10001-009-0032-5

The essential oil of turpentine and its major volatile fraction (α- and β-pinenes): a review

This paper provides a summary review of the major biological features concerning the essential oil of turpentine, its origin and use in traditional and modern medicine. More precisely, the safety of this volatile fraction to human health, and the medical, biological and environmental effects of the two major compounds of this fraction (α- and β-pinenes) have been discussed.

Keywords: Spirits of turpentine; α-pinene; β-pinene

  • International Flavors & Fragrances Inc. α and β pinene. Available from: URL: http://www.iff.com/Ingredients.nsf/0/9B9B9B1AD927E71B852569910065EDF1

  • Sybilska D, Kowalczyk J, Asztemborska M, Ochocka RJ, Lamparczyk H. Chromatographic studies of the enantiomeric composition of some therapeutic compositions applied in the treatment of liver and kidney diseases.J Chromatogr A 1994;665(1):67-73.CrossrefPubMedGoogle Scholar

  • Valnet J. Phytotherapy: treatment of diseases by plants. Paris: Le Livre de Poche; 1983. [in French].Google Scholar

  • Dorow P, Weiss T, Felix R, Schmutzler H. Effect of a secretolytic and a combination of pinene, limonene and cineole on mucociliary clearance in patients with chronic obstructive pulmonary disease.Arzneimittelforschung 1987;37(12): 1378-81.PubMedGoogle Scholar

  • Karlberg AT, Bergström MA, Börje A, Luthman K, Nilsson JL. Allergic contact dermatitis — formation, structural requirements, and reactivity of skin sensitizers.Chem Res Toxicol 2008 Jan;21(1):53-69.PubMedCrossrefGoogle Scholar

  • Lefèvre R, Baranger P. Peroxides and polyphenol derivatives in the treatment of cancer.G Ital Chemioter 1956;3(3-4): 397-407 [in French].Google Scholar

  • Chapard C. Chemical and analytical study of some oxidized terpenic gasolines. Physicochemical control of the drugs which derive from it [dissertation]. Bordeaux: Universite de Bordeaux; 1971 [in French].Google Scholar

  • Kleinschmidt J, Römmelt H, Zuber A. The pharmacokinetics of the bronchosecretolytic ozothin after intravenous injection.Int J Clin Pharmacol Ther Toxicol 1985;23(4):200-3.PubMedGoogle Scholar

  • Grimm W, Gries H. Researchers about terpineol allergies.Berufsdermatosen 1967;15:253-69 [in German].Google Scholar

  • Bohe MG. New studies on the autoxidation of α-pinene.Essenze Deriv Agrum 1983;53:492-500.Google Scholar

  • Jacquier R. From atom to life — cancers and diseases. Paris: Ed. Amphora; 1981 [in French].Google Scholar

  • Mercier B. Evaluation of biological and antiradical effects of peroxidizing terpenes [dissertation] Dijon: Université de Bourgogne [in French].Google Scholar

  • Stolz E. Investigations of the surface-active film in the lung alveoli reaction after the inhalation of ethereal oils.Med Welt 1976;27:1107-9 [in German].Google Scholar

  • Mercier B, Prost J. Impact of Bol d'Air Jacquier®) on oxygenation of mammals [poster]. Forum des Jeunes Chercheurs 2008, Besançon, France [in French].Google Scholar

  • Mercier B, Prost J. Impact of Bol d'Air Jacquier® on cell antiradical capacity [poster]. Forum des Jeunes Chercheurs 2006, Besançon, France [in French].Google Scholar

  • Mercier B, Prost J. Antioxidant activity of Bol d'Air Jacquier® Breathing Sessions in Wistar rats [oral communication]. Forum des Jeunes Chercheurs 2007, Dijon, France [in French].Google Scholar

  • Mercier B, Prost J. Evaluation of the antiradical status by urine analysis of Bol d'Air Jacquier® breathing sessions in rats [oral communication]. Forum des Jeunes Chercheurs 2008, Besançon, France [in French].Google Scholar

  • Mercier B, Prost J, Prost M. Antioxidant Activity of Bol d'Air Jacquier® Breathing Sessions in Wistar Rats — First Studies.Int J Occup Med Environ Health 2008;21(1):31-46. DOI 10.2478/v10001-008-0003-2CrossrefGoogle Scholar

  • Tepe B, Donmez E, Unlu M, Candan F, Daferera D, Vardar-Unlu G, et al. Antibacterial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex (Benth.) and Salvia multicaulis (Vahl). Food Chemistry 2004;84:519-25.CrossrefGoogle Scholar

  • Jang M, Ghio AJ, Cao G. Exposure of BEAS-2B cells to secondary organic aerosol coated on magnetic nanoparticles.Chem Res Toxicol 2006;19(8):1044-50.CrossrefGoogle Scholar

  • Rohr AC, Wilkins CK, Clausen PA, Hammer M, Nielsen GD, Wolkoff P, et al. Upper airway and pulmonary effects of oxidation products of (+)-α-pinene, d-limonene, and isoprene in BALB/c mice.Inhal Toxicol 2002;14(7):663-84.PubMedCrossrefGoogle Scholar

  • Bermudez J, Burgess MF, Cassidy F, Clarke GD. Activity of the oxidation products of oleum terebenthinae "Landes" on guinea pig airway smooth muscle in vivo and in vitro.Arzneim-Forrsch (Drug Res) 1987;37(11):1258-62.Google Scholar

  • Bourgine P. Therapeutic effects of oxidised terpenes in respiratory pathologies.M.M. 1977;138:59-62 [in French].Google Scholar

  • INRS. Turpentine oil. Fiche toxicologique n° 132, 1987 et 2000 [in French].Google Scholar

  • Ennifar S, Ferbach S, Kraut C, Rolli H. Physiological and pharmacological properties of monoterpenes. Strasbourg: Université Pasteur; 2001 [in French].Google Scholar

  • Borra JP, Roos RA, Renard D, Lazar H, Golman A, Goldman M. Electrical and chemical consequences of point discharges in a forest during a mist and a thunderstorm.J Phys D Appl Phys 1997;30:84-93.CrossrefGoogle Scholar

  • Utiyama M, Fukuyama T, Maruo YY, Ichino T, Izumi K, Hara H, et al. Formation and Deposition of Ozone in a Red Pine Forest.Water Air Soil Pollut 2004;151(1-4):53-70. DOI 10.1023/B:WATE.0000009891.12108.b9.CrossrefGoogle Scholar

  • Liapi C, Anifantis G, Chinou I, Kourounakis AP, Theodosopoulos S, Galanopoulou P. Antinociceptive properties of 1,8-Cineole and β-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents.Planta Med 2007;73(12):1247-54.Google Scholar

  • Winterhalter R, Van Dingenen R, Larsen BR, Jensen NR, Hjorth J. LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH-radicals.Atmos Chem Phys Discuss 2003;3:1-39.CrossrefGoogle Scholar

  • Docherty KS, Wu W, Lim YB, Ziemann PJ. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3.Environ Sci Technol 39(11):4049-59.Google Scholar

  • Chiron F, Chalchat JC, Garry RP, Pilichowski JF, Lacoste J. Photochemical hydroperoxidation of terpenes. I. Synthesis and characterization of α-pinene, α-pinene and limonene hydroperoxides.J Photochem Photobiol A: Chem 1997;111(1-3): 75-86.CrossrefGoogle Scholar

  • Iinuma Y, Müller C, Berndt T, Böge O, Claeys M, Herrmann H. Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol.Environ Sci Technol 2007;41(19):6678-83.PubMedCrossrefGoogle Scholar

  • Keinan E, Alt A, Amir G, Bentur L, Bibi H, Shoseyov D. Natural ozone scavenger prevents asthma in sensitized rats.Bioorg Med Chem 2005;13(2):557-62.CrossrefPubMedGoogle Scholar

  • McKay SA, Hunter WL, Godard KA, Wang SX, Martin DM, Bohlmann J, et al. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce.Plant Physiol 2003;133(1):368-78.PubMedCrossrefGoogle Scholar

  • Jaenson TG, Pålsson K, Borg-Karlson AK. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau.J Med Entomol 2006;43(1):113-9.PubMedCrossrefGoogle Scholar

  • Magwa ML, Gundidza M, Gweru N, Humphrey G. Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum.J Ethnopharmacol 2006;103(1):85-9.CrossrefPubMedGoogle Scholar

  • Eriksson K, Wiklund L. Dermal exposure to monoterpenes during wood work.J Environ Monit 2004;6(6):563-8.CrossrefGoogle Scholar

  • Almirall M, Montana J, Escribano E, Obach R, Berrozpe JD. Effect of d-limonene, α-pinene and cineole on in vitro transdermal human skin penetration of chlorpromazine and haloperidol.Arzneimittelforschung 1996;46(7):676-80.PubMedGoogle Scholar

  • Sapra B, Jain S, Tiwary AK. Percutaneous permeation enhancement by terpenes: mechanistic view.AAPS J 2008;10(1): 120-32.PubMedCrossrefGoogle Scholar

  • Jarvisalo J, Vainio H. Enhancement of hepatic drug biotransformation by a short-term intermittent turpentine exposure in the rat.Acta Pharmacol Toxicol (Copenh) 1980;46(1):32-6.Google Scholar

  • Sonboli A, Babakhani B, Mehrabian AR. Antimicrobial activity of six constituents of essential oil from Salvia.Z Naturforsch [C] 2006;61(3-4):160-4.Google Scholar

  • de Carvalho PM Jr, Rodrigues RF, Sawaya AC, Marques MO, Shimizu MT. Chemical composition and antimicrobial activity of the essential oil of Cordiaverbenacea D.C.J Ethnopharmacol 2004;95(2-3):297-301.PubMedCrossrefGoogle Scholar

  • Martins AP, Salgueiro LR, Goncalves MJ, Proenca da Cunha A, Vila R, Canigueral S. Essential oil composition and antimicrobial activity of Santiria trimera bark.Planta Med 2003;69(1):77-9.CrossrefGoogle Scholar

  • Andrews RE, Parks LW, Spence KD. Some Effects of Douglas Fir Terpenes on Certain Microorganisms.Appl Environ Microbiol 1980;40(2):301-4.PubMedGoogle Scholar

  • Trumpower BL, Gennis RB. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation.Annual Reviews in Biochemistry 1994;63:675-716.CrossrefGoogle Scholar

  • Sikkema J, de Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes.J J Biol Chem 1994;269:8022-8.Google Scholar

  • Helander IM, Alakomi HL, Kyosti LK, Mattiala-andholm T, Pol I, Smid EJ, et al. Characterization of the action of selected essential oil components on Gram-negative bacteria.J Agric Food Chem 1998;46:3590-5.CrossrefGoogle Scholar

  • Alma MH, Nitz S, Kollmannsberger H, Digrak M, Efe FT, Yilmaz N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.).J Agric Food Chem 2004;52(12):3911-4.CrossrefGoogle Scholar

  • Pichette A, Larouche PL, Lebrun M, Legault J. Composition and antibacterial activity of Abies balsamea essential oil.Phytother Res 2006;20(5):371-3.PubMedCrossrefGoogle Scholar

  • Cha JD, Jeong MR, Jeong SI, Moon SE, Kil BS, Yun SI, et al. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica.Phytother Res 2007;21(3): 295-9.CrossrefPubMedGoogle Scholar

  • Lucia A, Gonzalez Audino P, Seccacini E, Licastro S, Zerba E, Masuh H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae.J Am Mosq Control Assoc 2007;23(3):299-303.CrossrefGoogle Scholar

  • Jung WC, Jang YS, Hieu TT, Lee CK, Ahn YJ. Toxicity of Myristica fagrans seed compounds against Blattella germanica (Dictyoptera: Blattellidae).J Med Entomol 2007;44(3): 524-9.PubMedCrossrefGoogle Scholar

  • Byers JA, Zhang QH, Birgersson G. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape.Naturwissenschaften 2000;87:503-7.CrossrefGoogle Scholar

  • Pap A, Szarvas F. Effect of α-pinene on the mixed function of microsomal oxidase system in the rat.Acta Med Acad Sci Hung 1976;33(4):379-85.PubMedGoogle Scholar

  • Setzer WN, Setzer MC, Moriarity DM, Bates RB, Haber WA. Biological activity of the essential oil of Myrcianthes sp. nov. "black fruit" from Monteverde, Costa Rica.Planta Med 1999;65(5):468-9.PubMedCrossrefGoogle Scholar

  • Díaz C, Quesada S, Brenes O, Aguilar G, Cicció JF. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.Nat Prod Res 2008;22(17): 1521-34.PubMedCrossrefGoogle Scholar

  • Zhou J Y, Tang FD, Mao GG, Bian RL. Effect of α-pinene on nuclear translocation of NF-kappa B in THP-1 cells.Acta Pharmacol Sin 2004;25(4):480-4.PubMedGoogle Scholar

  • Lampronti I, Saab AM, Gambari R. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division.Int J Oncol 2006;29(4):989-95.PubMedGoogle Scholar

  • Grassmann J, Hippeli S, Vollmann R, Elstner EF. Antioxidative properties of the essential oil from Pinus mugo.J Agric Food Chem 2003;51(26):7576-82.CrossrefGoogle Scholar

  • Perry NS, Houghton PJ, Sampson J, Theobald AE, Hart S, Lis-Balchin M, et al. In-vitro activity of S. lavandulaefolia (Spanish sage) relevant to treatment of Alzheimer's disease.J Pharm Pharmacol 2001;53(10):1347-56.CrossrefPubMedGoogle Scholar

  • Camara CC, Nascimento NR, Macedo-Filho CL, Almeida FB, Fonteles MC. Antispasmodic Effect of the Essential Oil of Plectranthus barbatus and some Major Constituents on the Guinea-Pig Ileum.Planta Med 2003;69(12):1080-5.PubMedGoogle Scholar

  • González-Trujano ME, Peña EI, Martínez AL, Moreno J, Guevara-Fefer P, Déciga-Campos M, et al. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents.J Ethnopharmacol 2007;111(3):476-82.CrossrefGoogle Scholar

  • Umezu T, Nagano K, Ito H, Kosakai K, Sakaniwa M, Morita M. Anticonflict effects of lavender oil and identification of its active constituents.Pharmacol Biochem Behav 2006;85(4):713-21.PubMedCrossrefGoogle Scholar

  • Lamb JG, Marick P, Sorensen J, Haley S, Dearing MD. Liver biotransforming enzymes in woodrats Neotoma stephensi (Muridae).Comp Biochem Physiol C Toxicol Pharmacol 2004;138(2):195-201.CrossrefGoogle Scholar

  • Orhan I, Senol FS, Kartal M, Dvorská M, Zemlička M, Smejkal K, et al. Cholinesterase inhibitory effects of the extracts and compounds of Maclura pomifera (Rafin.) Schneider.Food Chem Toxicol 2009;47(8):1747-51. DOI 10.1016/j.fct.2009.04.023.CrossrefPubMedGoogle Scholar

  • Sayyah M, Nadjafnia L, Kamalinejad M. Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil.J Ethnopharmacol 2004;94(2-3):283-7.PubMedCrossrefGoogle Scholar

  • Erazo S, Delporte C, Negrete R, García R, Zaldívar M, Iturra G, et al. Constituents and biological activities of Schinus polygamus.J Ethnopharmacol 2006;107(3):395-400.PubMedCrossrefGoogle Scholar

  • Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil.J Appl Microbiol 2003;95(4):853-60.PubMedCrossrefGoogle Scholar

  • Uribe S, Ramirez T, Pena A. Effects of β-pinene on yeast membrane functions.J Bacteriol 1985;161:1195-200.PubMedGoogle Scholar

  • Tchoumbougnang F, Zollo PH, Dagne E, Mekonnen Y. In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei.Planta Med 2005;71(1):20-3.PubMedCrossrefGoogle Scholar

  • Yang YC, Choi HY, Choi WS, Clark JM, Ahn YJ. Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae).J Agric Food Chem 2004;52(9):2507-11.CrossrefGoogle Scholar

  • Kelen M, Tepe B. Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora.Bioresour Technol 2008;99(10):4096-104. DOI 10.1016/j.biortech.2007.09.002.PubMedCrossrefGoogle Scholar

  • Karioti A, Hadjipavlou-Litina D, Mensah ML, Fleischer TC, Skaltsa H. Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) A. Rich. (Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana.J Agric Food Chem 2004;52(26):8094-8.CrossrefGoogle Scholar

  • Mühlbauer RC, Lozano A, Palacio S, Reinli A, Felix R. Common herbs, essential oils, and monoterpenes potently modulate bone metabolism.Bone 2003;32(4):372-80.CrossrefPubMedGoogle Scholar

  • Iacobellis NS, Lo Cantore P, Capasso F, Senatore F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils.J Agric Food Chem 2005;53(1):57-61.CrossrefGoogle Scholar

  • Joy B, Rajan A, Abraham E. Antimicrobial activity and chemical composition of essential oil from Hedychium coronarium.Phytother Res 2007;21(5):439-43.PubMedCrossrefGoogle Scholar

  • Takikawa A, Abe K, Yamamoto M, Ishimaru S, Yasui M, Okubo Y, et al. Antimicrobial activity of nutmeg against Escherichia coli O157.J Biosci Bioeng 2002;94(4):315-20.Google Scholar

  • Abdel-Hady NM, Abdei-Halim AS, Al-Ghadban AM. Chemical composition and insecticidal activity of the volatile oils of leaves and flowers of Lantana camara L. cultivated in Egypt.J Egypt Soc Parasitol 2005;35(2):687-98.Google Scholar

  • De Andrade IL, Bezerra JN, Lima MA, de Faria RA, Lima MA, Andrade-Neto M, et al. Chemical composition and insecticidal activity of essential oils from Vanillosmopsis pohlii baker against Bemisia argentifolii.J Agric Food Chem 2004;52(19):5879-81.CrossrefGoogle Scholar

  • Krauze-Baranowska M, Mardarowicz M, Wiwart M, Pobłocka L, Dynowska M. Antifungal activity of the essential oils from some species of the genus Pinus.Z Naturforsch [C] 2002;57(5-6):478-82.Google Scholar

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings.J Chem Ecol 2005;31(5):1187-203.CrossrefPubMedGoogle Scholar

  • Russin WA, Hoesly JD, Elson CE, Tanner MA, Gould MN. Inhibition of rat mammary carcinogenesis by monoterpenoids.Carcinogenesis 1989:10(11):2161-4.CrossrefPubMedGoogle Scholar

  • Riyazi A, Hensel A, Bauer K, Geissler N, Schaaf S, Verspohl EJ. The effect of the volatile oil from ginger rhizomes (Zingiber officinale), its fractions and isolated compounds on the 5-HT3 receptor complex and the serotoninergic system of the rat ileum.Planta Med 2007;73(4):355-62.Google Scholar

  • Hedenstierna G, Alexandersson R, Wimander K, Rosén G. Exposure to terpenes: effects on pulmonary function.Int Arch Occup Environ Health 1983;51(3):191-8.CrossrefPubMedGoogle Scholar

  • Foussereau J. Allergic eczema to turpentine. Fiche d'allergologie dermatologie professionnelle n° 15, 1978, INRS [in French].Google Scholar

  • Eriksson KA, Levin JO, Sandström T, Lindström-Espeling K, Lindén G, Stjernberg NL. Terpene exposure and respiratory effects among workers in Swedish joinery shops.Scand J Work Environ Health 1997;23(2):114-20.PubMedCrossrefGoogle Scholar

  • Låstbom L, Falk-Filipsson A, Boyer S, Moldéus P, Ryrfeldt A. Mechanisms of 3-carene-induced bronchoconstriction in the isolated guinea pig lung.Respiration 1995;62(3):130-5.PubMedGoogle Scholar

  • Mølhave L, Kjaergaard SK, Hempel-Jørgensen A, Juto JE, Andersson K, Stridh G, et al. The eye irritation and odor potencies of four terpenes which are major constituents of the emissions of VOCs from Nordic soft woods.Indoor Air 2000;10(4):315-8.PubMedCrossrefGoogle Scholar

  • Menezes IA, Marques MS, Santos TC, Dias KS, Silva AB, Mello IC, et al. Antinociceptive effect and acute toxicity of the essential oil of Hyptis fruticosa in mice.Fitoterapia 2007;78(3):192-5.PubMedCrossrefGoogle Scholar

  • Kasanen JP, Pasanen AL, Pasanen P, Liesivuori J, Kosma VM, Alarie Y. Stereospecificity of the sensory irritation receptor for nonreactive chemicals illustrated by pinene enantiomers.Arch Toxicol 1998;72(8):514-23.PubMedCrossrefGoogle Scholar

  • Fransman W, McLean D, Douwes J, Demers PA, Leung V, Pearce N. Respiratory symptoms and occupational exposures in New Zealand plywood mill workers.Ann Occup Hyg 2003;47(4):287-95.CrossrefPubMedGoogle Scholar

  • Dutkiewicz J, Skórska C, Dutkiewicz E, Matuszyk A, Sitkowska J, Krysińska-Traczyk E. Response of sawmill workers to work-related airborne allergens.Ann Agric Environ Med 2001;8(1):81-90.PubMedGoogle Scholar

  • Estévez M, Ventanas S, Ramírez R, Cava R. Influence of the addition of rosemary essential oil on the volatile pattern of porcine frankfurters.J Agric Food Chem 2005;53(21):8317-24.CrossrefGoogle Scholar

  • Grassmann J. Terpenoids as plant antioxidants.Vitam Horm 2005;72:505-35.PubMedGoogle Scholar

  • Falk AA, Hagberg MT, Lof AE, Wigaeus-Hjelm EM, Wang ZP. Uptake, distribution and elimination of α-pinene in man after exposure by inhalation.Scan J Work Environ Health 1990;16: 372-8.CrossrefGoogle Scholar

  • Levin JO, Eriksson K, Falk A, Lof A. Renal elimination of verbenols in man following experimental α-pinene inhalation exposure.Int Arch Occup Environ Health 1992;63(8):571-3.PubMedCrossrefGoogle Scholar

  • Filipsson AF. Short term inhalation exposure to turpentine: toxicokinetics and acute effects in men.Occup Environ Med 1996;53(2):100-5.PubMedCrossrefGoogle Scholar

  • Ishida T, Asakawa Y, Takemoto T, Aratani T. Terpenoids biotransformation in mammals II: Biotransformation of α-pinene, β-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbit.J Pharm Sci 1981;70(4):406-15.CrossrefGoogle Scholar

  • Lindmark-Henriksson M, Isaksson D, Vanek T, Valterova I, Hogberg HE, Sjodin K. Transformation of α-pinene using Picea abies suspension culture.Nat Prod 2003;66(3):337-43.CrossrefGoogle Scholar

  • Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes.Inflamm Res 2000;49(11):619-26.Google Scholar

About the article

Published Online: 2010-03-02

Published in Print: 2009-01-01

Citation Information: International Journal of Occupational Medicine and Environmental Health, Volume 22, Issue 4, Pages 331–342, ISSN (Online) 1896-494X, ISSN (Print) 1232-1087, DOI: https://doi.org/10.2478/v10001-009-0032-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in