Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board Member: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2016: 0.890

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.251
Source Normalized Impact per Paper (SNIP) 2016: 0.624

Mathematical Citation Quotient (MCQ) 2016: 0.07

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 17, Issue 1 (Feb 2016)

Issues

Application of Bat Algorithm to Optimize Scaling Factors of Fuzzy Logic-Based Power System Stabilizer for Multimachine Power System

D. K. Sambariya
  • Corresponding author
  • Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
  • Email:
/ R. Prasad
  • Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
  • Email:
Published Online: 2016-01-21 | DOI: https://doi.org/10.1515/ijnsns-2015-0025

Abstract

This article presents the design of optimized fuzzy logic-based power system stabilizer (FPSS) to enhance small signal stability using bat algorithm (BA). The proposed optimization of scaling factors of FPSS is considered with an objective function based on square error minimization to guarantee the stability of nonlinear models of test system using BA. The BA-optimized FPSS (BAFPSS) controller is applied to the standard IEEE ten-machine thirty-nine-bus test power system model in the decentralized manner, and the performance is compared with the robust fuzzy controller. The robustness is tested by considering four different models of the test power system with different fault locations to establish the superiority of the proposed BAFPSS over the FPSS.

Keywords: fuzzy power system stabilizer; bat algorithm; BA-optimized fuzzy power system stabilizer; IEEE ten-machine thirty-nine-bus test power system

MSC® (2010).: 70K20; 74Pxx; 78M50; 93Dxx; 93C83

References

  • [1] M. Ramirez-Gonzalez and O. P. Malik, Self-tuned power system stabilizer based on a simple fuzzy logic controller, Electr. Power Compon. Syst. 38 (2010), 407–423, 2010/02/26,doi: .CrossrefGoogle Scholar

  • [2] F. P. Demello and C. Concordia, Concepts of synchronous machine stability as affected by excitation control, IEEE Trans. Power Apparatus Syst. 88 (1969), 316–329. doi: .CrossrefGoogle Scholar

  • [3] D. K. Sambariya and R. Gupta, Fuzzy applications in a multi-machine power system stabilizer, J. Electr. Eng. Technol. 5 (2010), 503–510. http://www.jeet.or.kr/ltkpsweb/pub/pubfpfile.aspx?ppseq=100.Google Scholar

  • [4] Y. Zhang, G. P. Chen, O. P. Malik and G. S. Hope, An artificial neural network based adaptive power system stabilizer, IEEE Trans. Energy Convers. 8 (1993), 71–77. doi: .CrossrefGoogle Scholar

  • [5] L. Guan, S. Cheng and R. Zhou, Artificial neural network power system stabiliser trained with an improved BP algorithm, IEE Proc. Gener. Transm. Distrib. 143 (1996), 135–141. doi: .CrossrefGoogle Scholar

  • [6] M. Soliman, A. L. Elshafei, F. Bendary, and W. Mansour, LMI static output-feedback design of fuzzy power system stabilizers, Expert Syst. Appl. 36 (2009), 6817–6825. doi:.CrossrefWeb of ScienceGoogle Scholar

  • [7] V. Mukherjee and S. P. Ghoshal, Intelligent particle swarm optimized fuzzy PID controller for AVR system, Electr. Power Syst. Res. 77 (2007), 1689–1698. doi: .CrossrefWeb of ScienceGoogle Scholar

  • [8] T.-P. Hong and C.-Y. Lee, Induction of fuzzy rules and membership functions from training examples, Fuzzy Sets Syst. 84 (1996), 33–47. doi: .CrossrefGoogle Scholar

  • [9] D. K. Sambariya, R. Gupta and A. K. Sharma, Fuzzy applications to single machine power system stabilizers, J. Theor. Appl. Inf. Technol. 5 (2009), 317–324. http://www.jatit.org/volumes/research-papers/Vol5No3/9Vol5No3.pdfGoogle Scholar

  • [10] D. K. Sambariya and R. Prasad, Robust power system stabilizer design for single machine infinite bus system with different membership functions for fuzzy logic controller, Proceedings of 7th International Conference on Intelligent Systems and Control (ISCO 2013), at Korpagam College of Engineering, Coimbatore, Tamilnadu, India, vol. IEEE Catalog number (Print): CFP1387T-PRT, ISBN (Print): 978-1-4673-4601-6, 13–19, January 4–5, 2013. doi: .CrossrefGoogle Scholar

  • [11] D. K. Sambariya and R. Prasad, Optimal tuning of fuzzy logic power system stabilizer using harmony search algorithm, Int. J. Fuzzy Syst. (2015), 1–14. doi: .CrossrefGoogle Scholar

  • [12] D. K. Sambariya, Power system stabilizer design using compressed rule base of fuzzy logic controller, J. Electr. Electron. Eng. 3 (July 1, 2015), 52–64. doi: .CrossrefGoogle Scholar

  • [13] D. K. Sambariya and R. Prasad, Power system stabilizer design for multimachine power system using interval type-2 fuzzy logic controller, Int. Rev. Electr. Eng. 8 (October 2013), 1556–1565. doi: .CrossrefGoogle Scholar

  • [14] D. K. Sambariya and R. Prasad, Evaluation of interval type-2 fuzzy membership function & robust design of power system stabilizer for SMIB power system, Sylwan J. 158 (April 2014), 289–307. http://sylwan.ibles.org/archive.php?v=158&i=5.Google Scholar

  • [15] H. Alkhatib and J. Duveau, Dynamic genetic algorithms for robust design of multimachine power system stabilizers, Int. J. Electr. Power Energy Syst. 45 (2013), 242–251. doi: .CrossrefWeb of ScienceGoogle Scholar

  • [16] A. Al-Hinai, Dynamic Stability Enhancement Using Genetic Algorithm Power System Stabilizer, in International Conference on Power System Technology (POWERCON), 2010, 1–7. doi:.CrossrefGoogle Scholar

  • [17] R. Gupta, B. Bandyopadhyay and A. M. Kulkarni, Robust decentralized fast-output sampling technique based power system stabilizer for a multi-machine power system, Int. J. Syst. Sci. 36 (2005), 297–314, 2005/04/15. doi: .CrossrefGoogle Scholar

  • [18] P. Idowu and A. Ghandakly, A discrete-time coordinated adaptive stabilizer for multimachine power systems, Int. J. Syst. Sci. 27 (1996), 597–604, 1996/07/01. doi: .CrossrefGoogle Scholar

  • [19] D. Gan, Z. QU, and H. CAI, multi machine power system excitation control design via theories of feedback linearization control and nonlinear robust control, Int. J. Syst. Sci. 31 (2000), 519–527.Google Scholar

  • [20] E. Abu-Al-Feilat, M. Bettayeb, H. Al-Duwaish, M. Abido and A. Mantawy, A neural network-based approach for on-line dynamic stability assessment using synchronizing and damping torque coefficients, Electr. Power Syst. Res. 39 (1996), 103–110. doi: .CrossrefGoogle Scholar

  • [21] S. M. Abd-Elazim and E. S. Ali, A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design, Int. J. Electr. Power Energy Syst. 46 (2013), 334–341. doi: .CrossrefWeb of ScienceGoogle Scholar

  • [22] H. M. Soliman, E. H. E. Bayoumi and M. F. Hassan, PSO–based power system stabilizer for minimal overshoot and control constraints, J. Electr. Eng. 59 (2008), 153–159. http://iris.elf.stuba.sk/JEEEC/data/pdf/3_108-6.Google Scholar

  • [23] M. A. Abido, Robust design of power system stabilizers for multimachine power systems using differential evolution, in: Computational Intelligence in Power Engineering, pp. 1–18. vol. 302, B. Panigrahi, A. Abraham and S. Das (eds.). Springer Berlin, Heidelberg, 2010. doi: .CrossrefGoogle Scholar

  • [24] Z. W. Geem, Harmony search applications in industry, in: Studies in Fuzziness and Soft Computing, Volume 226, Soft Computing Applications in Industry, pp. 117–134. vol. 226, B. Prasad (ed.). Springer-Verlag, Berlin and Heidelberg, 2008. doi: .CrossrefGoogle Scholar

  • [25] E. Alfaro-Cid, E. W. McGookin, and D. J. Murray-Smith, Optimisation of the weighting functions of an H ∞ controller using genetic algorithms and structured genetic algorithms, Int. J. Syst. Sci. 39 (2008), 335–347, 2008/04/01. doi: .CrossrefWeb of ScienceGoogle Scholar

  • [26] D. K. Sambariya and R. Prasad, Design of harmony search algorithm based tuned fuzzy logic power system stabilizer, Int. Rev. Electr. Eng. 8 (October 2013), 1594–1607. doi: .CrossrefGoogle Scholar

  • [27] M. A. Abido, Simulated annealing based approach to PSS and FACTS based stabilizer tuning, Int. J. Electr. Power Energy Syst. 22 (2000), 247–258. doi: .CrossrefGoogle Scholar

  • [28] X. S. Yang, A new metaheuristic bat-inspired algorithm, in: Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74, vol. 284, J. González, D. Pelta, C. Cruz, G. Terrazas and N. Krasnogor (eds.). Springer Berlin, Heidelberg, 2010. doi: .CrossrefGoogle Scholar

  • [29] D. K. Sambariya and R. Prasad, Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm, Int. J. Electr. Power Energy Syst. 61 (2014), 229–238. doi: CrossrefWeb of ScienceGoogle Scholar

  • [30] Y.-Y. Hsu and C.-L. Chen, Identification of optimum location for stabiliser applications using participation factors, IEE Proc. Gener. Transm. Distrib. 134 (1987), 238–244. doi: .CrossrefGoogle Scholar

  • [31] M. A. Abido, Optimal design of power-system stabilizers using particle swarm optimization, IEEE Trans. Energy Convers. 17 (2002), 406–413. doi: .CrossrefGoogle Scholar

  • [32] A. Mahabuba and M. Abdullah Khan, Optimal location of power system stabilizers in a multi machine power system using relative gain array (RGA) and genetic algorithm (GA), Int. J. Electr. Power Eng. 2 (2008), 19–27.Google Scholar

  • [33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220 (13 May 1983). doi: .CrossrefGoogle Scholar

  • [34] Y. Zhang and A. Bose, Design of wide-area damping controllers for interarea oscillations, IEEE Trans. Power Syst. 23 (2008), 1136–1143. doi: .CrossrefWeb of ScienceGoogle Scholar

  • [35] M. A. Pai, Energy function analysis for power system stability, K1uwer Academic Publishers, Norwell, MA, 1989.Google Scholar

  • [36] P. W. Sauer and M. A. Pai, Power system dynamics and stability, Prentice-Hall of India Pvt. Limited, New Delhi, 1998.Google Scholar

About the article

Received: 2015-03-04

Accepted: 2015-12-30

Published Online: 2016-01-21

Published in Print: 2016-02-01


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2015-0025.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in