Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year

IMPACT FACTOR 2016: 0.890

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2016: 0.07

See all formats and pricing
More options …
Volume 18, Issue 1


A Finite Element Domain Decomposition Approximation for a Semilinear Parabolic Singularly Perturbed Differential Equation

Sunil Kumar / B. V. Rathish Kumar
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/ijnsns-2015-0156


In this paper, we propose a Monotone Schwarz Iterative Method (MSIM) under the framework of Domain Decomposition Strategy for solving semilinear parabolic singularly perturbed partial differential equations (SPPDEs). A three-step Taylor Galerkin Finite Element (3TGFE) approximation of semilinear parabolic SPPDE is carried out during each of the stages of the MSIM. Appropriate Interface Problems are introduced to update the subdomain boundary conditions in the Monotone Iterative Domain Decomposition (MIDD) method. The convergence of the MIDD method has been established. In addition, the stability and ϵ-uniform convergence of 3TGFE based MIDD has been discussed. Further, by using maximum principle and induction hypothesis, the convergence of the proposed MSIM has been established. Also, the proposed 3TGFE based MIDD has been successfully implemented on a couple of test problems.

Keywords: singularly perturbed problems; Taylor Galerkin method; monotone Schwarz iterative method; maximum principle

PACS: 34K10; 34K28; 35K20; 35K58; 65M12; 65M55; 65M60


  • [1] H. G. Roos,M. Stynes and L. Tobiska, Numericalmethods for singularly perturbed differential equations, convectiondiffusion and flow problems, Springer, Berlin, 1996.

  • [2] N. S. Bakhvalov, On the optimization of methods of solving boundary value problems with boundary layers, USSR Comp. Mat. and Mat. Phys. 9 (1969), 139–166.Google Scholar

  • [3] G. I. Shishkin, Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer, USSR Comp. Mat. andMat. Phys. 29 (1989), 01–10.Google Scholar

  • [4] E. P. Doolan, J. H. H.Miller andW. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980.

  • [5] M. Stynes and E. O’Riorden, L1 and L uniform convergence of a difference scheme for a semilinear singular perturbation problem, Numer. Math. 50 (1987), 519–531.Google Scholar

  • [6] M. Stynes and E. O’Riorden, Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points, Numer. Math. 55 (1989), 521–544.Google Scholar

  • [7] W. Guo and M. Stynes, Finite element analysis of exponentially fitted Lumped schemes for time-dependent convection diffusion problems, Numer. Math. 66 (1993), 347–371.Google Scholar

  • [8] C. E. Pearson, On a differential equation of boundary layer type, J. Math. Phys. Sci. 47 (1968), 134–154.Google Scholar

  • [9] J. J. H. Miller, E. O’Riorden, and G. I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996.

  • [10] R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978), 1025–1039.Google Scholar

  • [11] D. Duffy, Uniformly convergent difference schemes for problems with a small parameter in the leading derivative, Ph.D. thesis, School of Mathematics, Trinity College, Dublin, 1980.

  • [12] L. Liu and Y. Chen, Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay, Appl. Math. Comp. 227 (2014), 801–810.Google Scholar

  • [13] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenus Press, New York, 1992.

  • [14] C. V. Pao, Monotone iterations for numerical solutions of reaction-diffusion -convection equations with time delay, Nume. Methods for PDEs 14 (1998), 339–351.Google Scholar

  • [15] X. Lu, Combined methods for numerical solutions of parabolic problems with time delays, Appl. Math. Comput. 89 (1994), 213–254.Google Scholar

  • [16] X. Lu, Monotone method and convergence acceleration for finite difference solution of parabolic problems with delays, Nume. Methods for PDEs, 11 (1995), 591–602.Google Scholar

  • [17] I. Boglaev, Monotone Schwarz iterates for a semilinear parabolic convection-diffusion problem, J. Comput. and Appl. Math. 183 (2005), 191–209.Google Scholar

  • [18] V. Sangwan and B. V. R. Kumar, Finite element analysis for mass-lumped three-step Taylor Galerkin method for time dependent singularly perturbed problems with exponentially fitted splines, Num. Func. Anal. and Opt. 33 (2012), 638–660.Google Scholar

  • [19] I. Boglaev, On a domain decompostion algorithm for a singularly perturbed reaction-diffusion problem, J. Comput. and Appl. Math. 98 (1998), 213–232.Google Scholar

  • [20] V. Sangwan, Finite element analysis and parallel computation of singulary perturbed problems using three-step Taylor Galerkin method, Ph.D. thesis,IIT Kanpur, India, 2011.

  • [21] D. Y. Tzou, Micro-to-macroscale heat transfer, Taylor and Francis, Washington, DC, 1997.

  • [22] D. D. Joseph, L. Preziosi, Addendum to the paper heat waves, Rev. Mod. Phys. 62 (1989), 375–391.Google Scholar

  • [23] Q. Liu, X. Wang, D. De Kee, Mass transport through swelling membranes, Int. J. Eng. Sci. 43 (2005), 1464–1470.Google Scholar

  • [24] M. Bestehorn, E. V. Grigorieva, Formation and propagation of localized status in extended systems, Ann. Phys. (Liepzig), 13 (2004), 423–431.Google Scholar

  • [25] M A. Ezzat, M. I. Othman, A. M. S. El-Karamany, State space approach to two-dimensional generalized thermo-viscoelasticity with relaxation times, Int. J. Eng. Sci., 40 (2002), 1251–1274.Google Scholar

  • [26] L. Bobisud, Second-order linear parabolic equations with small parameter, Arch. Rational Mech. Anal. 27 (1967), 385–397.Google Scholar

  • [27] P. D. Lax and B. Wendroff, System of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217–237.Google Scholar

  • [28] P. D. Lax and B. Wendroff, On the stability of difference schemes, Comm. Pure Appl. Math. 15 (1962), 363–371.Google Scholar

  • [29] P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Comm. Pure Appl. Math. 17 (1964), 381–398.Google Scholar

  • [30] M. Garbey, Yu. A. Kuznetsov and Yu. V. Vassilevski, A parallel Schwarz method for a convection-diffusion problem, SIAM J. Sci. Comput. 22 (2000), 891–916.Google Scholar

About the article

Received: 2015-10-29

Accepted: 2016-12-14

Published Online: 2017-01-20

Published in Print: 2017-02-01

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 18, Issue 1, Pages 41–55, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2015-0156.

Export Citation

©2017 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in