[1] Grooms I. and Julien K., Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, J. Comput. Phys. **230** (9) (2011), 3630–3560.

[2] Kassam A. and Trefethen L. N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. **26** (4) (2005), 1214–1233.

[3] Baltensperger R., Berrut J. P. and Noël B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comput. **68** (227) (1999), 1109–1120.

[4] Wang H. and Huybrechs D., Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials, Math. Comput. **83** (290) (2014), 2893–2914.

[5] Cheney E. W., Introduction to approximation theory, McGraw-Hill, New York, 1966.

[6] Davis P. J., Interpolation and Approximation, Dover Publications Inc., New York, 1975.

[7] Mason J. C. and Handscomb D. C., Chebyshev polynomial, CRC Press, New York, 2003.

[8] Dahlquist G. and Björck A., Numerical methods in scientific computing, volume I. SIAM, Philadelphia, 2007.

[9] Davis P. J. and Rabinowitz P., Methods of numerical integration, 2nd edition, Academic Press, 1984.

[10] Süli E. and Mayers D., An introduction to numerical analysis, Cambridge University Press, New York, 2003.

[11] Rainville E. D., Special functions, Macmillan, New York, 1960.

[12] Wang H. and Xiang S., On the convergence rates of Legendre approximation, Math. Comput. 81 (278) (2012), 861–877.

[13] SenGupta I., Spectral analysis for a three-dimensional superradiance problem, J. Math. Anal. Appl. **375** (2011), 762–776.

[14] SenGupta I. et al., Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions, J. Fourier Anal. Appl. **18** (2012), 182–210.

[15] Cox S. M. and Matthews P. C., Exponential time differencing for stiff systems, J. Comput. Phys. **176** (2) (2002), 430–455.

[16] Li D., Zhang C., Wang W. and Zhang Y., Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Appl. Math. Modell. **35** (6) (2011), 2711-2722.

[17] Hochbruck M. and Ostermann A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. **43** (3) (2005), 1069–1090.

[18] Hochbruck M. and Ostermann A., Exponential integrators, Acta Numer. **19** (2010), 209–286.

[19] Luan V.T. and Ostermann A., Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math. **256** (2014), 168–179.

[20] Beylkin G., J. Keiser M. and Vozovoi L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. **147** (2) (1998), 362–387.

[21] Krogstad S., Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. **203** (1) (2005), 72–88.

[22] Hochbruck M., A. Ostermann and Schweitzer J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal. **47** (2009), 786–803.

[23] Luan V. T. and Ostermann A., Exponential B-series: The stiff case, SIAM J. Numer. Anal. **51** (2013), 3431–3445.

[24] Bratsos A. G., A fourth-order numerical scheme for solving the modified Burgers equation, Comput. Math. Appl. **60** (5) (2010), 1393–1400.

[25] Hodgkin A. L. and Huxley A. F., A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Phys. **117** (4) (1952), 500–544.

[26] Wazwaz A. M., Traveling wave solutions of the generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput. **169** (1) (2005), 639–656.

[27] Kyrychko Y. N., M. Bartuccelli V. and Blyuss K. B., Persistence of travelling wave solutions of a fourth order diffusion system, J. Comput. Appl. Math. **176** (2) (2005), 433–443.

[28] Fitzhugh R., Mathematical models of excitation and propagation in nerve, in: H. P. Schwan ed., Biological engineering, pp. 1–85. McGraw Hill, New York, 1969.

[29] Lu B. Q., B. Xiu Z., Z. Pang L. and Jiang X. F., Exact traveling wave solution of one class of nonlinear diffusion equation, Phys. Lett. A 175 (2) (1993), 113–115.

[30] Wazwaz A. M., Analytical study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput. **195** (2) (2008), 754–761.

[31] Molabahrami A. and Khani F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. Real World Appl. **10** (2) (2009), 589–600.

[32] Deng X., Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput. **204** (2) (2008), 733–737.

[33] Wang X. Y., Zhu Z. S. and Lu Y. K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A **23** (3) (1990), 271–274.

[34] Soheili A. R., Kerayechian A. and Davoodi N., Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput. **219** (8) (2012), 3486–3495.

[35] Bratsos A. G., A fourth order improved numerical scheme for the generalized Burgers-Huxley equation, Am. J. Comput. Math. **1** (3) 152–158.

[36] Ismail H. N. A., Raslan K. and Rabboh A. A. A., Adomian decomposition method for Burger’s Huxley and Burger’s-Fisher equations, Appl. Math. Comput. **159** (1) (2004), 291–301.

[37] Javidi M., A numerical solution of the generalized Burger’s-Huxley equation by pseudospectral method and Darvishi’s preconditioning, Appl. Math. Comput. **175** (2) (2006), 1619–1628.

[38] Javidi M., A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method, Appl. Math. Comput. **178** (2) (2006), 338–344.

[39] Batiha B., Noorani M. S. M. and Hashim I., Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals **36** (3) (2008), 660–663.

[40] Murray J. D., Mathematical biology I: an introduction, Springer-Verlag, New York, 2002.

[41] Lagrange J. L., Leçons élémentaires sur les mathématiques, données à l’Ecole Normale en 1795, J. de l’École polytech **7** (1795), 183–287.

[42] Henrici P., Essentials of numerical analysis with pocket calculator demonstrations, Wiley, New York, 1982.

[43] Werner W., Polynomial interpolation: Lagrange versus Newton, Math. Comput. **43** (167) (1984), 205–217.

[44] Berrut J. P. and Trefethen L. N., Barycentric Lagrange interpolation, SIAM Rev. **46** (3) (2004), 501–517.

[45] Webb M., Trefethen L. L. N. and Gonnet P., Stability of Barycentric Interpolation Formulas for Extrapolation, SIAM J. Sci. Comput. **34** (6) (2012), A3009–A3015.

[46] Minchev B. V., Exponential integrators for semilinear problems, PhD thesis, University of Bergen, 2004.

[47] Saad Y., Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2nd edition, UK, 2003.

[48] Arnoldi W., The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. **9** (1951), 17–29.

[49] Owolabi K. M. and Patidar K. C., Numerical solution of singular patterns in one-dimensional Gray-Scott-like models, Int. J. Nonlinear Sci. Numer. Simul. **15** (7-8) (2014), 437–462.

[50] Javidi M. and Golbabai A., A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Solitons Fractals **39** (2) (2009), 849–857.

[51] Harris S. E., Sonic shocks governed by the modified Burgers’ equation, Eur. J. Appl. Math. **7** (2) (1996), 201–222.

[52] Griffiths G. W. and Schiesser W. E., Traveling wave analysis of partial differential equations, Academic Press, Burlington, VT, 2012.

[53] Irk D., Sextic B-spline collocation method for the modified Burgers equation, Kybernetes **38** (9) (2009), 1599–1620.

[54] Ramadan M. A. and El-Danaf T. S., Numerical treatment for the modified Burgers equation, Math. Comput. Simul. **70** (2) (2005), 90–98.

[55] Saka B. and Daǧ I., A numerical study of the Burgers’ equation, J. Franklin Inst. **345** (4) (2008), 328–348.

## Comments (0)