Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board Member: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2016: 0.890

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.251
Source Normalized Impact per Paper (SNIP) 2016: 0.624

Mathematical Citation Quotient (MCQ) 2016: 0.07

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 18, Issue 1 (Feb 2017)

Issues

Barycentric Jacobi Spectral Method for Numerical Solutions of the Generalized Burgers-Huxley Equation

Edson Pindza
  • Corresponding author
  • Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON, Canada; Department of Applied Mathematics, University of Western Ontario, London, ON, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. K. Owolabi / K.C. Patidar
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/ijnsns-2016-0032

Abstract

Numerical solutions of nonlinear partial differential equations, such as the generalized and extended Burgers-Huxley equations which combine effects of advection, diffusion, dispersion and nonlinear transfer are considered in this paper. Such system can be divided into linear and nonlinear parts, which allow the use of two numerical approaches. Barycentric Jacobi spectral (BJS) method is employed for the spatial discretization, the resulting nonlinear system of ordinary differential equation is advanced with a fourth-order exponential time differencing predictor corrector. Comparative numerical results for the values of options are presented. The proposed method is very elegant from the computational point of view. Numerical computations for a wide variety of problems, show that the present method offers better accuracy and efficiency in comparison with other previous methods. Moreover the method can be applied to a wide class of nonlinear partial differential equations.

Keywords: exponential time differencing; spectral methods; Burgers-Huxley equation; nonlinear PDEs; reaction-diffusion

MSC 2010: 65L05; 65M06; 65M20

References

  • [1] Grooms I. and Julien K., Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, J. Comput. Phys. 230 (9) (2011), 3630–3560.Google Scholar

  • [2] Kassam A. and Trefethen L. N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (4) (2005), 1214–1233.Google Scholar

  • [3] Baltensperger R., Berrut J. P. and Noël B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comput. 68 (227) (1999), 1109–1120.Google Scholar

  • [4] Wang H. and Huybrechs D., Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials, Math. Comput. 83 (290) (2014), 2893–2914.Google Scholar

  • [5] Cheney E. W., Introduction to approximation theory, McGraw-Hill, New York, 1966.Google Scholar

  • [6] Davis P. J., Interpolation and Approximation, Dover Publications Inc., New York, 1975.Google Scholar

  • [7] Mason J. C. and Handscomb D. C., Chebyshev polynomial, CRC Press, New York, 2003.Google Scholar

  • [8] Dahlquist G. and Björck A., Numerical methods in scientific computing, volume I. SIAM, Philadelphia, 2007.Google Scholar

  • [9] Davis P. J. and Rabinowitz P., Methods of numerical integration, 2nd edition, Academic Press, 1984.Google Scholar

  • [10] Süli E. and Mayers D., An introduction to numerical analysis, Cambridge University Press, New York, 2003.Google Scholar

  • [11] Rainville E. D., Special functions, Macmillan, New York, 1960.Google Scholar

  • [12] Wang H. and Xiang S., On the convergence rates of Legendre approximation, Math. Comput. 81 (278) (2012), 861–877.Google Scholar

  • [13] SenGupta I., Spectral analysis for a three-dimensional superradiance problem, J. Math. Anal. Appl. 375 (2011), 762–776.Google Scholar

  • [14] SenGupta I. et al., Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions, J. Fourier Anal. Appl. 18 (2012), 182–210.

  • [15] Cox S. M. and Matthews P. C., Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2) (2002), 430–455.Google Scholar

  • [16] Li D., Zhang C., Wang W. and Zhang Y., Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Appl. Math. Modell. 35 (6) (2011), 2711-2722.Google Scholar

  • [17] Hochbruck M. and Ostermann A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (3) (2005), 1069–1090.Google Scholar

  • [18] Hochbruck M. and Ostermann A., Exponential integrators, Acta Numer. 19 (2010), 209–286.Google Scholar

  • [19] Luan V.T. and Ostermann A., Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math. 256 (2014), 168–179.Google Scholar

  • [20] Beylkin G., J. Keiser M. and Vozovoi L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (2) (1998), 362–387.Google Scholar

  • [21] Krogstad S., Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (1) (2005), 72–88.Google Scholar

  • [22] Hochbruck M., A. Ostermann and Schweitzer J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal. 47 (2009), 786–803.Google Scholar

  • [23] Luan V. T. and Ostermann A., Exponential B-series: The stiff case, SIAM J. Numer. Anal. 51 (2013), 3431–3445.Google Scholar

  • [24] Bratsos A. G., A fourth-order numerical scheme for solving the modified Burgers equation, Comput. Math. Appl. 60 (5) (2010), 1393–1400.Google Scholar

  • [25] Hodgkin A. L. and Huxley A. F., A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Phys. 117 (4) (1952), 500–544.

  • [26] Wazwaz A. M., Traveling wave solutions of the generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput. 169 (1) (2005), 639–656.Google Scholar

  • [27] Kyrychko Y. N., M. Bartuccelli V. and Blyuss K. B., Persistence of travelling wave solutions of a fourth order diffusion system, J. Comput. Appl. Math. 176 (2) (2005), 433–443.Google Scholar

  • [28] Fitzhugh R., Mathematical models of excitation and propagation in nerve, in: H. P. Schwan ed., Biological engineering, pp. 1–85. McGraw Hill, New York, 1969.Google Scholar

  • [29] Lu B. Q., B. Xiu Z., Z. Pang L. and Jiang X. F., Exact traveling wave solution of one class of nonlinear diffusion equation, Phys. Lett. A 175 (2) (1993), 113–115.Google Scholar

  • [30] Wazwaz A. M., Analytical study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput. 195 (2) (2008), 754–761.Google Scholar

  • [31] Molabahrami A. and Khani F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. Real World Appl. 10 (2) (2009), 589–600.Google Scholar

  • [32] Deng X., Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput. 204 (2) (2008), 733–737.Google Scholar

  • [33] Wang X. Y., Zhu Z. S. and Lu Y. K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A 23 (3) (1990), 271–274.Google Scholar

  • [34] Soheili A. R., Kerayechian A. and Davoodi N., Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput. 219 (8) (2012), 3486–3495.Google Scholar

  • [35] Bratsos A. G., A fourth order improved numerical scheme for the generalized Burgers-Huxley equation, Am. J. Comput. Math. 1 (3) 152–158.Google Scholar

  • [36] Ismail H. N. A., Raslan K. and Rabboh A. A. A., Adomian decomposition method for Burger’s Huxley and Burger’s-Fisher equations, Appl. Math. Comput. 159 (1) (2004), 291–301.Google Scholar

  • [37] Javidi M., A numerical solution of the generalized Burger’s-Huxley equation by pseudospectral method and Darvishi’s preconditioning, Appl. Math. Comput. 175 (2) (2006), 1619–1628.Google Scholar

  • [38] Javidi M., A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method, Appl. Math. Comput. 178 (2) (2006), 338–344.Google Scholar

  • [39] Batiha B., Noorani M. S. M. and Hashim I., Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals 36 (3) (2008), 660–663.Google Scholar

  • [40] Murray J. D., Mathematical biology I: an introduction, Springer-Verlag, New York, 2002.Google Scholar

  • [41] Lagrange J. L., Leçons élémentaires sur les mathématiques, données à l’Ecole Normale en 1795, J. de l’École polytech 7 (1795), 183–287.

  • [42] Henrici P., Essentials of numerical analysis with pocket calculator demonstrations, Wiley, New York, 1982.Google Scholar

  • [43] Werner W., Polynomial interpolation: Lagrange versus Newton, Math. Comput. 43 (167) (1984), 205–217.Google Scholar

  • [44] Berrut J. P. and Trefethen L. N., Barycentric Lagrange interpolation, SIAM Rev. 46 (3) (2004), 501–517.Google Scholar

  • [45] Webb M., Trefethen L. L. N. and Gonnet P., Stability of Barycentric Interpolation Formulas for Extrapolation, SIAM J. Sci. Comput. 34 (6) (2012), A3009–A3015.Google Scholar

  • [46] Minchev B. V., Exponential integrators for semilinear problems, PhD thesis, University of Bergen, 2004.

  • [47] Saad Y., Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2nd edition, UK, 2003.Google Scholar

  • [48] Arnoldi W., The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951), 17–29.Google Scholar

  • [49] Owolabi K. M. and Patidar K. C., Numerical solution of singular patterns in one-dimensional Gray-Scott-like models, Int. J. Nonlinear Sci. Numer. Simul. 15 (7-8) (2014), 437–462.Google Scholar

  • [50] Javidi M. and Golbabai A., A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Solitons Fractals 39 (2) (2009), 849–857.Google Scholar

  • [51] Harris S. E., Sonic shocks governed by the modified Burgers’ equation, Eur. J. Appl. Math. 7 (2) (1996), 201–222.Google Scholar

  • [52] Griffiths G. W. and Schiesser W. E., Traveling wave analysis of partial differential equations, Academic Press, Burlington, VT, 2012.Google Scholar

  • [53] Irk D., Sextic B-spline collocation method for the modified Burgers equation, Kybernetes 38 (9) (2009), 1599–1620.Google Scholar

  • [54] Ramadan M. A. and El-Danaf T. S., Numerical treatment for the modified Burgers equation, Math. Comput. Simul. 70 (2) (2005), 90–98.Google Scholar

  • [55] Saka B. and Daǧ I., A numerical study of the Burgers’ equation, J. Franklin Inst. 345 (4) (2008), 328–348.Google Scholar

About the article

Received: 2016-02-24

Accepted: 2016-10-31

Published Online: 2017-01-20

Published in Print: 2017-02-01


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2016-0032.

Export Citation

©2017 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in