Jump to ContentJump to Main Navigation
Show Summary Details

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board Member: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2015: 0.687

SCImago Journal Rank (SJR) 2015: 0.298
Source Normalized Impact per Paper (SNIP) 2015: 0.476
Impact per Publication (IPP) 2015: 0.677

Mathematical Citation Quotient (MCQ) 2015: 0.04

Online
ISSN
2191-0294
See all formats and pricing
Volume 18, Issue 1 (Feb 2017)

Issues

Barycentric Jacobi Spectral Method for Numerical Solutions of the Generalized Burgers-Huxley Equation

Edson Pindza
  • Corresponding author
  • Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON, Canada; Department of Applied Mathematics, University of Western Ontario, London, ON, Canada
  • Email:
/ M. K. Owolabi
  • Department of Mathematical Sciences, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria
  • Email:
/ K.C. Patidar
  • Department of Mathematics and Applied Mathematics, University of the Western Cape, Bellville, South Africa
  • Email:
Published Online: 2017-01-20 | DOI: https://doi.org/10.1515/ijnsns-2016-0032

Abstract

Numerical solutions of nonlinear partial differential equations, such as the generalized and extended Burgers-Huxley equations which combine effects of advection, diffusion, dispersion and nonlinear transfer are considered in this paper. Such system can be divided into linear and nonlinear parts, which allow the use of two numerical approaches. Barycentric Jacobi spectral (BJS) method is employed for the spatial discretization, the resulting nonlinear system of ordinary differential equation is advanced with a fourth-order exponential time differencing predictor corrector. Comparative numerical results for the values of options are presented. The proposed method is very elegant from the computational point of view. Numerical computations for a wide variety of problems, show that the present method offers better accuracy and efficiency in comparison with other previous methods. Moreover the method can be applied to a wide class of nonlinear partial differential equations.

Keywords: exponential time differencing; spectral methods; Burgers-Huxley equation; nonlinear PDEs; reaction-diffusion

MSC 2010: 65L05; 65M06; 65M20

References

  • [1] Grooms I. and Julien K., Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, J. Comput. Phys. 230 (9) (2011), 3630–3560.

  • [2] Kassam A. and Trefethen L. N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (4) (2005), 1214–1233.

  • [3] Baltensperger R., Berrut J. P. and Noël B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comput. 68 (227) (1999), 1109–1120.

  • [4] Wang H. and Huybrechs D., Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials, Math. Comput. 83 (290) (2014), 2893–2914.

  • [5] Cheney E. W., Introduction to approximation theory, McGraw-Hill, New York, 1966.

  • [6] Davis P. J., Interpolation and Approximation, Dover Publications Inc., New York, 1975.

  • [7] Mason J. C. and Handscomb D. C., Chebyshev polynomial, CRC Press, New York, 2003.

  • [8] Dahlquist G. and Björck A., Numerical methods in scientific computing, volume I. SIAM, Philadelphia, 2007.

  • [9] Davis P. J. and Rabinowitz P., Methods of numerical integration, 2nd edition, Academic Press, 1984.

  • [10] Süli E. and Mayers D., An introduction to numerical analysis, Cambridge University Press, New York, 2003.

  • [11] Rainville E. D., Special functions, Macmillan, New York, 1960.

  • [12] Wang H. and Xiang S., On the convergence rates of Legendre approximation, Math. Comput. 81 (278) (2012), 861–877.

  • [13] SenGupta I., Spectral analysis for a three-dimensional superradiance problem, J. Math. Anal. Appl. 375 (2011), 762–776.

  • [14] SenGupta I. et al., Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions, J. Fourier Anal. Appl. 18 (2012), 182–210.

  • [15] Cox S. M. and Matthews P. C., Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2) (2002), 430–455.

  • [16] Li D., Zhang C., Wang W. and Zhang Y., Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Appl. Math. Modell. 35 (6) (2011), 2711-2722.

  • [17] Hochbruck M. and Ostermann A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (3) (2005), 1069–1090.

  • [18] Hochbruck M. and Ostermann A., Exponential integrators, Acta Numer. 19 (2010), 209–286.

  • [19] Luan V.T. and Ostermann A., Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math. 256 (2014), 168–179.

  • [20] Beylkin G., J. Keiser M. and Vozovoi L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (2) (1998), 362–387.

  • [21] Krogstad S., Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (1) (2005), 72–88.

  • [22] Hochbruck M., A. Ostermann and Schweitzer J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal. 47 (2009), 786–803.

  • [23] Luan V. T. and Ostermann A., Exponential B-series: The stiff case, SIAM J. Numer. Anal. 51 (2013), 3431–3445.

  • [24] Bratsos A. G., A fourth-order numerical scheme for solving the modified Burgers equation, Comput. Math. Appl. 60 (5) (2010), 1393–1400.

  • [25] Hodgkin A. L. and Huxley A. F., A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Phys. 117 (4) (1952), 500–544.

  • [26] Wazwaz A. M., Traveling wave solutions of the generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput. 169 (1) (2005), 639–656.

  • [27] Kyrychko Y. N., M. Bartuccelli V. and Blyuss K. B., Persistence of travelling wave solutions of a fourth order diffusion system, J. Comput. Appl. Math. 176 (2) (2005), 433–443.

  • [28] Fitzhugh R., Mathematical models of excitation and propagation in nerve, in: H. P. Schwan ed., Biological engineering, pp. 1–85. McGraw Hill, New York, 1969.

  • [29] Lu B. Q., B. Xiu Z., Z. Pang L. and Jiang X. F., Exact traveling wave solution of one class of nonlinear diffusion equation, Phys. Lett. A 175 (2) (1993), 113–115.

  • [30] Wazwaz A. M., Analytical study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput. 195 (2) (2008), 754–761.

  • [31] Molabahrami A. and Khani F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. Real World Appl. 10 (2) (2009), 589–600.

  • [32] Deng X., Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput. 204 (2) (2008), 733–737.

  • [33] Wang X. Y., Zhu Z. S. and Lu Y. K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A 23 (3) (1990), 271–274.

  • [34] Soheili A. R., Kerayechian A. and Davoodi N., Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput. 219 (8) (2012), 3486–3495.

  • [35] Bratsos A. G., A fourth order improved numerical scheme for the generalized Burgers-Huxley equation, Am. J. Comput. Math. 1 (3) 152–158.

  • [36] Ismail H. N. A., Raslan K. and Rabboh A. A. A., Adomian decomposition method for Burger’s Huxley and Burger’s-Fisher equations, Appl. Math. Comput. 159 (1) (2004), 291–301.

  • [37] Javidi M., A numerical solution of the generalized Burger’s-Huxley equation by pseudospectral method and Darvishi’s preconditioning, Appl. Math. Comput. 175 (2) (2006), 1619–1628.

  • [38] Javidi M., A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method, Appl. Math. Comput. 178 (2) (2006), 338–344.

  • [39] Batiha B., Noorani M. S. M. and Hashim I., Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals 36 (3) (2008), 660–663.

  • [40] Murray J. D., Mathematical biology I: an introduction, Springer-Verlag, New York, 2002.

  • [41] Lagrange J. L., Leçons élémentaires sur les mathématiques, données à l’Ecole Normale en 1795, J. de l’École polytech 7 (1795), 183–287.

  • [42] Henrici P., Essentials of numerical analysis with pocket calculator demonstrations, Wiley, New York, 1982.

  • [43] Werner W., Polynomial interpolation: Lagrange versus Newton, Math. Comput. 43 (167) (1984), 205–217.

  • [44] Berrut J. P. and Trefethen L. N., Barycentric Lagrange interpolation, SIAM Rev. 46 (3) (2004), 501–517.

  • [45] Webb M., Trefethen L. L. N. and Gonnet P., Stability of Barycentric Interpolation Formulas for Extrapolation, SIAM J. Sci. Comput. 34 (6) (2012), A3009–A3015.

  • [46] Minchev B. V., Exponential integrators for semilinear problems, PhD thesis, University of Bergen, 2004.

  • [47] Saad Y., Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2nd edition, UK, 2003.

  • [48] Arnoldi W., The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951), 17–29.

  • [49] Owolabi K. M. and Patidar K. C., Numerical solution of singular patterns in one-dimensional Gray-Scott-like models, Int. J. Nonlinear Sci. Numer. Simul. 15 (7-8) (2014), 437–462.

  • [50] Javidi M. and Golbabai A., A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Solitons Fractals 39 (2) (2009), 849–857.

  • [51] Harris S. E., Sonic shocks governed by the modified Burgers’ equation, Eur. J. Appl. Math. 7 (2) (1996), 201–222.

  • [52] Griffiths G. W. and Schiesser W. E., Traveling wave analysis of partial differential equations, Academic Press, Burlington, VT, 2012.

  • [53] Irk D., Sextic B-spline collocation method for the modified Burgers equation, Kybernetes 38 (9) (2009), 1599–1620.

  • [54] Ramadan M. A. and El-Danaf T. S., Numerical treatment for the modified Burgers equation, Math. Comput. Simul. 70 (2) (2005), 90–98.

  • [55] Saka B. and Daǧ I., A numerical study of the Burgers’ equation, J. Franklin Inst. 345 (4) (2008), 328–348.

About the article

Received: 2016-02-24

Accepted: 2016-10-31

Published Online: 2017-01-20

Published in Print: 2017-02-01


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2016-0032. Export Citation

Comments (0)

Please log in or register to comment.
Log in