Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board Member: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year

IMPACT FACTOR 2016: 0.890

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.251
Source Normalized Impact per Paper (SNIP) 2016: 0.624

Mathematical Citation Quotient (MCQ) 2016: 0.07

See all formats and pricing
More options …
Volume 18, Issue 1 (Feb 2017)


A Lagrange Regularized Kernel Method for Solving Multi-dimensional Time-Fractional Heat Equations

Edson Pindza
  • Corresponding author
  • Edson Pindza, Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 002, Republic of South Africa,
  • Email:
/ Jules Clement Mba
  • Jules Clement Mba, Department of Mathematics and Applied Mathematics, University of Johannesburg, P. O. Box 524, Auckland Park 2006, South Africa
  • Email:
/ Eben Maré
  • Eben Maré, Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 002, Republic of South Africa
  • Email:
/ Désirée Moubandjo
  • Désirée Moubandjo, Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 002, Republic of South Africa,
  • Email:
Published Online: 2016-12-17 | DOI: https://doi.org/10.1515/ijnsns-2016-0089


Evolution equations containing fractional derivatives can provide suitable mathematical models for describing important physical phenomena. In this paper, we propose an accurate method for numerical solutions of multi-dimensional time-fractional heat equations. The proposed method is based on a fractional exponential integrator scheme in time and the Lagrange regularized kernel method in space. Numerical experiments show the effectiveness of the proposed approach.

Keywords: local spectral methods; Lagrange regularized kernel; time-fractional diffusion equations; exponential integrators

MSC 2010: 337K10; 44A15; 45K05; 65M12; 65M70


  • [1] A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn. 80 (1-2) (2015), 101–116.Google Scholar

  • [2] A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dyn. 85 (3) (2016), 1815–1823.Google Scholar

  • [3] M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys. 293 (2015), 312–338.Google Scholar

  • [4] M. A. Zaky, S. S. Ezz-Eldien, E. H. Doha, J. A. Tenreiro Machado and A. H. Bhrawy, An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations, J. Comput. Nonlinear Dyn. 11 (6) (2016), 061002 8 pages.Google Scholar

  • [5] S. G. Samko, A. A. Kilbas andO. I.Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Amsterdam, 1993.Google Scholar

  • [6] F. X. Chang, J. C. Wu and S. H. Dai, The fractional dispersion in pore medium and Lévy distribution, J. Nanjing Univ. Inform. Sci. Technol. Nat. Sci. Ed. 40 (3) (2004), 287–291.Google Scholar

  • [7] P. D. Ariel, On a second parameter in the solution of the flow near a rotating disk by homotopy analysis method, Commun. Numer. Anal. 2012 (2012), 1–13.Google Scholar

  • [8] H. Panahipour, Application of extended Tanh method to generalized Burgers-type equations, Commun. Numer. Anal. 2012 (2012), 1–14.Google Scholar

  • [9] Y. Keskin and G. Oturanc, Reduced differential transform method: a new approach to factional partial differential equations, Nonlinear Sci. Lett. A 1 (2010), 207–217.Google Scholar

  • [10] F. Liu, V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Comput. Appl. Math. 13 (2003), 233–245.Google Scholar

  • [11] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), 1533–1552.Google Scholar

  • [12] H. Zhanga, F. Liu, M. S. Phanikumarc andM. M. Meerschaert, Anovel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl. 66 (2013), 693–701.Google Scholar

  • [13] X.-J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivative without singular kernel, application to the modelling of the steady heat flow, Therm. Sci. 20 (2) (2016), 753–756.Web of ScienceGoogle Scholar

  • [14] X.-J. Yang, J. A. Tenreiro Machado and H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach, Appl. Math. Comput. 274 (2016), 143–151.Google Scholar

  • [15] X.-J. Yang, J. A. Tenreiro Machado and J. Hristov, Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, Nonlinear Dyn. 84 (2016), 3–7.Google Scholar

  • [16] A. H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numer. Algorithms 73 (2016), 91–113.Google Scholar

  • [17] A. H. Bhrawy, A new spectral algorithm for a time-space fractional partial differential equations with subdiffusion and superdiffusion, AH Bhrawy, Proc. Romanian Acad. A (17) (2016), 39–46.Google Scholar

  • [18] A. H. Bhrawy and M. A. Zaky, A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients, Math. Methods Appl. Sci. 39 (2016), 1765–1779.Google Scholar

  • [19] A. H. Bhrawy, E. H. Doha S. S. Ezz-Eldien and M. A. Abdelkawy, A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation, Calcolo 53 (2016), 1–17.Google Scholar

  • [20] A. H. Bhrawy and M.A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys. 281 (2015), 876–895.Google Scholar

  • [21] E. Pindza, K. M. Owolabi, Fourier spectral method for higher order space fractional reaction diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), 112–128.Google Scholar

  • [22] D. K. Hoffman, N. Nayar, O. A. Sharafeddin and D. J. Kouri, Analytic banded approximation for the discretized free propagator, J. Phys. Chem. 95 (21) (1991), 8299–8305.Google Scholar

  • [23] D. K. Hoffman and D. J. Kouri, Distributed approximating function theory: A general, fully quantal approach to wave propagation, J. Phys. Chem. 96 (3) (1992), 1179–1184.Google Scholar

  • [24] G. W. Wei, D. S. Zhang, D. J. Kouri and D. K. Hoffman, Distributed approximating functional approach to the Fokker-Planck equation: Time propagation, J. Phys. Chem. 107 (8) (1997), 3239–3246.Google Scholar

  • [25] D. S. Zhang, G. W. Wei, D. J. Kouri and D. K. Hoffman, Distributed approximating functional approach to the Fokker-Planck equation: Eigenfunction expansion, J. Chem. Phys. 106 (12) (1997), 5216–5224.Google Scholar

  • [26] E. Pindza and E. Maré, Discrete Singular Convolution Method for Numerical Solutions of Fifth Order Korteweg-De Vries Equations, J. Appl. Math. Phys. 1 (2013), 5–15.Google Scholar

  • [27] R. Garrappa and M. Popolizio, Generalized exponential time differencing methods for fractional order problems, Comput. Math. Appl. 62 (2011), 876–890.Google Scholar

  • [28] M. A. Botchev, A short guide to exponential Krylov subspace time integration for Maxwell’s equations, Memorandum 1992, Department of Applied Mathematics, University of Twente, Enschede, ISSN 1874–4850.Google Scholar

  • [29] G. W. Wei, Discrete singular convolution for the Fokker-Planck equation, J. Chem. Phys. 110 (1999), 8930–8942.Google Scholar

  • [30] J. KorevaarMathematical methods1Academic Press, New York1968.Google Scholar

  • [31] G. G. Walter and J. Blum, Probability density estimation using delta sequences, Ann. Stat. 7 (1977), 328–340.Google Scholar

  • [32] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, UK, 1996.Google Scholar

  • [33] G. W. Wei, Y. B. Zhao and Y. Xiang, Discrete singular convolution and its application to the analysis of plates with internal supports. I. Theory and algorithm, Int. J. Numer. Methods Eng. 55 (2002), 913–946.Google Scholar

  • [34] L. W. Qian, On the regularized Whittaker-Kotel’nikov-Shannon sampling formula, Proc. Am. Math. Soc. 131 (2003), 1169–1176.Google Scholar

  • [35] L. W. Qian and D. B. Creamer, Localization of the generalized sampling series and its numerical application, SIAM J. Numer. Anal. 43(6) (2006), 2500–2516.Google Scholar

  • [36] A. J. Laub, Matrix analysis for scientists and engineers. SIAM, Philadelphia, 2005.Google Scholar

  • [37] Y. Z, Povstenko, Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses, Mech. Res. Commun. 37 (4) (2010), 436–440.Google Scholar

  • [38] M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. Roy. Astronom. Soc. 13 (1967), 529–539.Google Scholar

  • [39] I. Podlubny, Fractional differential equations, in: Mathematics in Science and Engineering, vol. 198, Academic Press Inc., San Diego, CA, 1999.Google Scholar

  • [40] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in: North-Holland mathematics studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.Google Scholar

  • [41] Y. SAAD, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992), 209–228.Google Scholar

  • [42] W. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17–29.Google Scholar

About the article

Received: 2016-06-14

Accepted: 2016-10-31

Published Online: 2016-12-17

Published in Print: 2017-02-01

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2016-0089.

Export Citation

©2017 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in