Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 18, Issue 2

Issues

Ordered, Disordered and Partially Synchronized Schools of Fish

Björn Birnir / Baldvin Einarsson
  • G. Millan Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics; and Department of Materials Science and Engineering, Universidad Carlos III de Madrid, Leganes, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis L. Bonilla
  • G. Millan Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics; and Department of Materials Science and Engineering, Universidad Carlos III de Madrid, Leganes, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Cornejo-DonosoORCID iD: http://orcid.org/0000-0002-4244-2865
Published Online: 2017-02-16 | DOI: https://doi.org/10.1515/ijnsns-2016-0156

Abstract

We study the properties of an ODE description of schools of fish (B. Birnir, An ODE model of the motion of pelagic fish, J. Stat. Phys. 128(1/2) (2007), 535–568.) and how they change in the presence of a random acceleration. The model can be reduced to one ODE for the direction of the velocity of a generic fish and another ODE for its speed. These equations contain the mean speed vˉ and a Kuramoto order parameter r for the phases of the fish velocities. In this paper, we give a complete qualitative analysis of the system for large number of particles. We show that the stationary solutions of the ODEs consist of an incoherent unstable solution with r=vˉ=0 and a globally stable solution with r=1 and a constant vˉ>0. In the latter solution, all the fish move uniformly in the same direction with vˉ and the direction of motion determined by the initial configuration of the school. This is called the “migratory solution”. In the second part of the paper, the directional headings of the particles are perturbed, in two distinct ways, and the speeds accelerated in order to obtain two distinct classes of non-stationary, complex solutions. We show that the perturbed systems have similar behavior as the unperturbed one, and derive the resulting constant value of the average speed, verifying the numerical observations. Finally, we show that the system exhibits a similar bifurcation to that in Vicsek and Czirok (T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75(6) (Aug 1995), 1226–1229.) between phases of synchronization and disorder. Either increasing the variance of the Brownian angular noise, or decreasing the turning rate, or coupling between the particles, cause a similar phase transition. These perturbed models represent a more realistic view of schools of fish found in nature. We apply the theory to compute the order parameter for a simulation of the Chile-Peru anchovy fishery.

Keywords: fish schools; synchronization; order parameters

MSC 2010: 37F99; 32H50

References

  • [1] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (6) (Aug 1995), 1226–1229.

  • [2] B. Birnir, An ODE model of the motion of pelagic fish, J. Stat. Phys. 128 (1/2) (2007), 535–568.Google Scholar

  • [3] A. Barbaro, B. Einarsson, B. Birnir, S. Sigurðsson, H. Valdimarsson, Ó.K. Pálsson, S. Sveinbjörnsson and Þ. Sigurðsson, Modelling and simulations of the migration of pelagic fish, ICES J. Mar. Sci. 66 (2009), 826–838.

  • [4] A. B. T. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discrete and Continuous Dyn. Syst. Ser B 19 (2014), 1249–1278.Google Scholar

  • [5] S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys. 63 (3/4) (1991), 613–635.

  • [6] H. Chiba and I. Nishikawa, Center manifold reduction for large populations of globally coupled phase oscillators. Chaos 21 (2011), 043103. http://dx.doi.org/10.1063/1.3647317.Crossref

  • [7] A. B. T. Barbaro, K. Taylor, P. Trethewey, L. Youseff and B. Birnir, Discrete and continuous models of the behavior of pelagic fish: applications to the capelin, Math. Comput. Simul. 79 (12) (2009), 3397–3414.

  • [8] S. Hubbard, P. Babak, S. Sigurðsson and K. G. Magnússon, A model of the formation of fish schools and migration of fish, Ecol. Modell. 174 (2004), 359–374.Google Scholar

  • [9] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, Lect. Notes Phys. 39 (1975), 420.Google Scholar

  • [10] A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48 (6) (Jun 2003), 988–1001.Web of Science

  • [11] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77 (2005), 137–185.Google Scholar

  • [12] R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci. 17 (2007), 309–347.Google Scholar

  • [13] H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory and Dyn. Syst. FirstView 8 (2014), 1–73.Google Scholar

  • [14] S. H. Strogatz, R. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation be generalized Landau Damping. Phys. Rev. Lett. 68 (18) (1992), 2730–2733.

  • [15] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer, Berlin, 1999.

  • [16] J. F. Cornejo, Effects of fish movement and environmental variability in the design and success of a marine protected area, PhD thesis, University of California, Santa Barbara, 2016.Google Scholar

  • [17] A. Huth and C. Wissel, The simulation of fish schools in comparison with experimental data, Ecol. Modell. 75 (1994), 135–146.Google Scholar

  • [18] I. Aoki, A simulation study on the schooling mechanism in fish, Bull. Jpn. Soc. Sci. Fish. 48 (8) (1982), 1081–1088.

  • [19] H. Scott Gordon, The economic theory of a common-property resource: the fishery, J. Polit. Econ. 62 (2) (1954), 124–142.

  • [20] R. Hilborn, F. Micheli and G. A De Leo, Integrating marine protected areas with catch regulation, Can. J. Fish. Aquat. Sci. 63 (3) (2006), 642–649.

  • [21] E. Ott and T. M. Antonsen, Long time evolution of phase oscillator systems, Chaos 19 (2) (2009), 023117.Web of Science

  • [22] E. Ott and T. M. Antonsen, Long time evolution of phase oscillator systems, Chaos 21 (2) (2011), 025112.Web of Science

  • [23] R. E. Mirollo, The asymptotic behavior of the order parameter for the infinite-n kuramoto model, Chaos 22 (2012), 043118.Google Scholar

  • [24] B. Birnir, Global attractors and basic turbulence, in: K. M. Spatschek and F. G. Mertens, editors,Nonlinear coherent structures in physics and biology, volume 329, NATO ASI Series, NewYork, 1994.

  • [25] J. Milnor, On the concept of attractor, Commun. Math. Phys. 99 (1985), 177–195.Google Scholar

About the article

Received: 2016-10-24

Accepted: 2016-12-29

Published Online: 2017-02-16

Published in Print: 2017-04-01


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 18, Issue 2, Pages 163–174, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2016-0156.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in