[1]

L. Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung” translated to “Motion of fluids with very little viscosity”, Internationalen Mathematiker-Kongresses in Heidelberg **8** (13) (1904), 1–8.Google Scholar

[2]

L. L. Lee, Boundary layer over a thin needle, Phys Fluids. **10** (4) (1967), 822–828. doi:.CrossrefGoogle Scholar

[3]

D. R. Miller, The Boundary-layer on a paraboloid of revolution, Proc. Cambridge Philos. Soc. **65** (1969), 285–298.Google Scholar

[4]

R. T. Davi , M. J. Werle , Numerical solutions for laminar incompressible flow past a paraboloid of revolution, AIAA J. **10** (9) (1972), 1224–1230. doi: .CrossrefGoogle Scholar

[5]

S. Ahmad, R. Nazar , Pop L., Mathematical modeling of Boundary layer flow over a moving thin needle with variable heat flux, in: Proceedings of the 12th WSEAS International Conference on Applied Mathematics, pp. 48–53, World Scientific and Engineering Academy and Society (WSEAS) Stevens point Wisconsin, USA., December 29–31.Google Scholar

[6]

A. Ishak, R. Nazar, Pop I., Boundary layer flow over a continuously moving thin needle in a parallel free stream, Chin. Phys. Lett. **24** (10) (2007), 2895–2897. doi:.CrossrefGoogle Scholar

[7]

T. Fang, J. Zhang, Y.Zhong, Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput. **218** (2012), 7241–7252. doi:.CrossrefGoogle Scholar

[8]

S. P.Anjali Devi, M.Prakash, Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet, J. Nigerian Math. Soc. **34** (2015), 318–330. doi:.CrossrefGoogle Scholar

[9]

G. K. Ramesh, B.C. Prasannakumara, Gireesha B. J., Rashidi M. M., Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation, J. Appl. Fluid Mech. **9** (3) (2016), 1115–1122.Google Scholar

[10]

I. L. Animasaun, 47nm alumina-water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction, Eng Alexandria. J. **55** (3) (2016), 2375–2389. doi: .CrossrefGoogle Scholar

[11]

L. Roberts, On the melting of a semi-infinite body of ice placed in a hot stream of air, Fluid Mech J. **4** (1958), 505–528. doi:.CrossrefGoogle Scholar

[12]

M. Epstein, D. H. Cho, Melting heat transfer in steady laminar flow over a flat plate, Heat Trans J. **98** (1976), 531–533. doi:.CrossrefGoogle Scholar

[13]

B. C. Prasannnakumara, B. J. Gireesha, P. T. Manjunatha , Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink, Int. J. Comput. Methods Eng. Sci. Mech. **16** (5) (2015), 265–274. doi: .CrossrefGoogle Scholar

[14]

K. S.Adegbie, A. J. Omowaye, A. B. Disu, I. L. Animasaun, Heat and mass transfer of upper convected Maxwell fluid flow with variable thermo-physical properties over a horizontal melting surface, Appl. Math. **6** (2015), 1362–1379. doi: .CrossrefGoogle Scholar

[15]

A. J. Omowaye, I. L. Animasaun, Upper-convected Maxwell fluid flow with variable thermo-physical properties over a melting surface situated in hot environment subject to thermal stratification, Appl J. Mech Fluid. **9** (4) (2016), 1777–1790.Google Scholar

[16]

T. Hayat, Z. Hussain, A. Alsaedi, B. Ahmad, Heterogeneous-homogeneous reactions and melting heat transfer effects in flow with carbon nanotubes, Molecul Liquid. J., **220** (2016), 200–207. doi: .CrossrefGoogle Scholar

[17]

I. L.Animasaun, Casson fluid flow of variable viscosity and thermal conductivity along exponentially stretching sheet embedded in a thermally stratified medium with exponentially heat generation, Heat Mass J. Trans. Res. (JHMTR) **2** (2) (2015), 63–78. doi: .CrossrefGoogle Scholar

[18]

H. Alfven, Existence of electromagnetic-hydrodynamic waves. Nature Publishing Group **150** (3805) (1942), 405–406. doi .CrossrefGoogle Scholar

[19]

V. J.Rossow, On flow of electrically conducting fluid over a flat plate in the presence of a transverse magnetic field, Technical Report NACA, 3071. Report/Patent Number: NACA-TR-1358, 1957.Google Scholar

[20]

N. Liron, Wilhelm H. E., Integration of the magnetohydrodynamic boundary-layer equations by Meksin’s method, ZAMM - J. Appl. Math. Mech. **54** (1) (1974), 27–37. doi: .CrossrefGoogle Scholar

[21]

K.Das, Radiation and melting effect on MHD boundary layer flow over a moving surface, Ain Shams Eng. J. **5** (4) (2014), 1207–1214. doi:.CrossrefGoogle Scholar

[22]

S. S. Motsa, Animasaun I. L., A new numerical investigation of some thermo-physical properties on unsteady MHD non-Darcian flow past an impulsively started vertical surface, Thermal Sci. 19 (Suppl. 1) (2015), S249–S258. doi: .CrossrefGoogle Scholar

[23]

C. S. K. Raju , N.Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, J. Molecul. Liquid. **215** (2016), 115–126. doi:CrossrefGoogle Scholar

[24]

O. D.Makinde, F. Mabood, W. A. Khan , M. S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, J. Molecul. Liquid **219** (2016), 624–630. doi: .CrossrefGoogle Scholar

[25]

N. Sandeep, C. S. K. Raju , C. Sulochana, V.Sugunamma. Effects of aligned magnetic field and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink, Int. J. Sci. Eng. **8**(2) (2015), 151–158. doi: .CrossrefGoogle Scholar

[26]

W. A.Khan, O. D. Makinde, Z. H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, Int. J. Heat Mass Trans. **74** (2014), 285–291.Google Scholar

[27]

C. S. K. Raju, N. Sandeep, V. Sugunamma, M. Jayachandra Babu, J. V. Ramana Reddy, Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface, Eng. Sci. Technol. Int. J. **19** (1) (2016), 45–52. doi:.CrossrefGoogle Scholar

[28]

W. A.Khan, O. D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, Int. J. Thermal Sci. **81** (2014), 118–124. doi:.CrossrefGoogle Scholar

[29]

J. W. Smith, N. Epstein , Effect of wall roughness on convective heat transfer in commercial pipes, Am. Ins. Chem. Eng. AIChE J.() **3** (2) (1957), 242–248. doi: .CrossrefGoogle Scholar

[30]

H. E. Zellnik, S. WChurchill,, Convective heat transfer from hightemperature air inside a tube, Am. Inst. Chem. Eng. (AIChE J.) **4** (1) (1958), 37–42. doi: .CrossrefGoogle Scholar

[31]

I. L. Animasaun, Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation, Ain Shams Eng. J. **7** (2) (2016), 755–765. doi: .CrossrefGoogle Scholar

[32]

N. Casson, A flow equation for Pigment oil-suspensions of the printing ink type, in: Mill CC (Ed.), Rheology of Disperse Systems, p. 84, Pergamon Press, Oxford, UK, 1959.Google Scholar

[33]

N. T. M.Eldabe, G. Saddeck, A. F. El-Sayed, Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinder, Mech. Mech. Eng. **5** (2) (2001), 237–251.Google Scholar

[34]

C. S. K.Raju, N. Sandeep, V. Sugunamma, M. Jayachandra Babu and J.V. Ramana Reddy , Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface, Eng. Sci. Technol., Int. J. **19** (1) (2016), 45–52. doi: .CrossrefGoogle Scholar

[35]

W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of casson nanofluid past a stretching sheet with slip and convective boundary condition, J. Aerospace Eng. **29** (2) (2016), 04015037. doi: .CrossrefGoogle Scholar

[36]

I. L. Animasaun, Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction, J. Nigerian Math. Soc. **34** (1) (2015), 11–31. doi:.CrossrefGoogle Scholar

[37]

O. D.Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, Thermal Sci Int. J. **109** (2016), 159–171. doi:.CrossrefGoogle Scholar

[38]

G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Press, (1967), ISBN: 0-521-66396-2.Google Scholar

[39]

T. Y. Na, Computational Methods in Engineering Problems Boundary Value, Press Academic, York New, 1979.Google Scholar

[40]

A. Pantokratoras, A common error made in investigation of boundary layer flows, Appl. Math. Modell. **33** (2009), 413–422.Google Scholar

[41]

F. S. Gökhan, Effect of the Function Guess & Continuation Method on the Run Time of Solvers MATLAB BVP. Ionescu Clara M. (Ed.), 1, (2011).Google Scholar

[42]

J. Kierzenka, L. F. Shampine, A BVP solver based on residual control and the MATLAB PSE, ACM Trans. Math. Software (TOMS). **27**(3) (2001), 299–316.CrossrefGoogle Scholar

[43]

M. Mustafa, T. Hayat, I. Pop, A. Aziz, Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate, Heat Trans. Asian Res. **40** (6) (2011), 563–576. doi: .CrossrefGoogle Scholar

[44]

A. J. Chamkha, MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction, Int. Commun. Heat Mass Trans. **30** (3) (2003), 413–422. doi:.CrossrefGoogle Scholar

[45]

T. M. Agbaje, S. Mondal, Z. G. Makukula, S. S. Motsa, Sibanda P., A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet, Ain Shams Eng. J. (2015) in-press. doi:.CrossrefGoogle Scholar

[46]

E. A. Adebile, I. L. Animasaun, A. I. Fagbade, Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method, J. Nigerian Math. Soc. **35** (1) (2016), 1–17. doi:.CrossrefGoogle Scholar

[47]

O. K. Koriko, I. L.Animasaun, New similarity solution of micropolar fluid flow problem over an uhspr in the presence of quartic kind of autocatalytic chemical reaction, Frontiers Transfer Heat Mass (FHMT) **8** (2017), 26. doi: .CrossrefGoogle Scholar

[48]

T.Hayat, M. Hussain, M. Awais, S. Obaidat, Melting heat transfer in a boundary layer flow of a second grade fluid under soret and dufour effects, Numerical Methods Int. J. Flow Heat Fluid. **23** (2013), 1155–1168. doi:.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.