Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2016: 0.890

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.251
Source Normalized Impact per Paper (SNIP) 2016: 0.624

Mathematical Citation Quotient (MCQ) 2016: 0.07

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 2

Issues

Solvability of Anti-periodic BVPs for Impulsive Fractional Differential Systems Involving Caputo and Riemann–Liouville Fractional Derivatives

Yuji Liu
  • Corresponding author
  • Department of Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, P.R.China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-09 | DOI: https://doi.org/10.1515/ijnsns-2017-0009

Abstract

Sufficient conditions are given for the existence of solutions of anti-periodic value problems for impulsive fractional differential systems involving both Caputo and Riemann–Liouville fractional derivatives. We allow the nonlinearities p(t)f(t,x,y,z,w) and q(t)g(t,x,y,z,w) in fractional differential equations to be singular at t=0 and t=1. Both f and g may be super-linear and sub-linear. The analysis relies on some well known fixed point theorems. The initial value problem discussed may be seen as a generalization of some ecological models. An example is given to illustrate the efficiency of the main theorems. Many unsuitable lemmas in recent published papers are pointed out in order not to mislead readers. A conclusion section is given at the end of the paper.

Keywords: anti-periodic BVP; impulsive fractional differential system; Caputo fractional derivative; Riemann–Liouville fractional derivative; initial value problem; solution,Leray-Schauder alternative.

MSC 2010: 34A08; 26A33; 39B99; 45G10; 34B37; 34B15; 34B16

References

  • [1]

    Q. Dai, H. Li, To study blowing-up solutions of a nonlinear system of fractional differential equations (in Chinese). Sci. Sin. Math. 42 (12) (2012) 1205–1212.CrossrefGoogle Scholar

  • [2]

    N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math. 63(3) (2013), 1289–1310.CrossrefGoogle Scholar

  • [3]

    M. Kirane, S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations, Nonlinear Anal.: TMA 73(12) (2010), 3723–3736.CrossrefGoogle Scholar

  • [4]

    M. Kirane, M. Medved, N. Tata, On the nonexistence of blowing-up solutions to a fractional functional-differential equation, Georgian Math. J. 19(1) (2012), 127–144.Google Scholar

  • [5]

    T. A. M. Langlands, B. I. Henry, S. L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol. 59(6) (2009), 761–808.CrossrefGoogle Scholar

  • [6]

    C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rossler equations, Physica A 341(2004), 55–61.CrossrefGoogle Scholar

  • [7]

    Y. Liu, New existence results for positive solutions of boundary value problems for coupled systems of multi-term fractional differential equations, Hacettepe J. Math. Stat. 45(2) (2016), 391–416.Google Scholar

  • [8]

    Y. Liu, B. Ahmad, R. P Agarwal, Existence of solutions for a coupled system of nonlinear fractional differential equations with fractional boundary conditions on the half-line, Adv. Differ. Equ. 46 (2013), 4618pages.Google Scholar

  • [9]

    Z. M. Odibat, S. Momani, Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order, Int. J. Nonlinear Sci. Numer. Simul. 7(1) (2006), 27–34.Google Scholar

  • [10]

    Z. Wei, Q. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl. 367(1) (2010), 260–272.CrossrefGoogle Scholar

  • [11]

    X. Yang, D. Baleanu, M. Lazarević, M. Cajić, Fractal boundary value problems for integral and differential equations with local fractional operators, Thermal Sci. 19(2015), 959–966.CrossrefGoogle Scholar

  • [12]

    A. A. Kilbas and J. J. Trujillo, Differential equations of fractional order: methods, results and problems-I, Appl. Anal. 78 (2001), 153 –192.Google Scholar

  • [13]

    A. A. Kilbas and J. J. Trujillo, Differential equations of fractional order: methods, results and problems-II, Appl. Anal. 81(2) (2002), 435–493.Google Scholar

  • [14]

    A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.Google Scholar

  • [15]

    I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, USA, 1999.Google Scholar

  • [16]

    F. Gao, X. Yang, Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci. 20(S3) (2016), 873–879.Google Scholar

  • [17]

    X. Yang, Some new applications for heat and fluid flows via fractional derivatives without singular kernel, Thermal Sci. 20(S3) (2016), 833–839.CrossrefGoogle Scholar

  • [18]

    A. Yang, Y. Han, J. Li, W. Liu, On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Thermal Sci. 20(S3) (2016), 717–721.CrossrefGoogle Scholar

  • [19]

    X. Yang, H. Srivastava, J. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Thermal Sci. 20(2016), 753–756.CrossrefGoogle Scholar

  • [20]

    H. Ergoren, A. Kilicman, Some existence results for impulsive nonlinear fractional differential equations with closed boundary conditions, Abstract and Applied Analysis, Volume 2012, Article ID 387629, 15pages.

  • [21]

    X. Yang, J. Machado, D. Baleanu, C. Cattani, On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos: Interdisciplin. J. Nonlinear Sci. 26(8) (2016), 110–118.Google Scholar

  • [22]

    X. Yang, J. Machado, J. Hristov, Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, Nonlinear Dyn. 84(2016), 3–7.CrossrefGoogle Scholar

  • [23]

    J. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod Phys. B 20(10) (2006), 1141–99.CrossrefGoogle Scholar

  • [24]

    J.H. He, Variational iteration method: a kind of non-linear analytical technique, some examples, Int. J. Nonlinear Mech. 34(4) (1999), 699–708.CrossrefGoogle Scholar

  • [25]

    J.H. He, X.H. Wu, Construction of solitary solution and compaction-like solution by variational iteration method, Chaos Soliton Fract. 29(2006), 108–13.CrossrefGoogle Scholar

  • [26]

    M. Belmekki, Juan J. Nieto, Rosana Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Prob. 2009 (2009), Article ID 324561, 18pages.Google Scholar

  • [27]

    M. Benchohra, J. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87(2008), 851–863.CrossrefGoogle Scholar

  • [28]

    G. L. Karakostas, Positive solutions for the Ф-Laplacian when Ф is a sup-multiplicative-like function, Electron. J. Differ. Equ. 68(2004), 1–12.Google Scholar

  • [29]

    X. Li, X. Liu, M. Jia, Y. Li, S. Zhang, Existence of positive solutions for integral boundary value problems of fractional differential equations on infinite interval, Math. Meth. Appl. Sci. 40(6) (2017), 1892–1904.Google Scholar

  • [30]

    K. S. Miller, S. G. Samko, Completely monotonic functions, Integr. Transf. Spec. Funct. 12(2001), 389–402.CrossrefGoogle Scholar

  • [31]

    J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Appl. Math. Lett. 23(2010), 1248–1251.CrossrefGoogle Scholar

  • [32]

    J. J. Nieto, Comparison results for periodic boundary value problems of fractional differential equations, Fractional Differ. Equ. 1(2011), 99–104.Google Scholar

  • [33]

    K. Shah and R. Ali Khan, Iterative scheme for a coupled system of fractional-order differential equations with three-point boundary conditions Mathematical Methods in the Applied Sciences, to appear, 4 AUG 2016, DOI: .Crossref

  • [34]

    X. Wang, C. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equations, Electr. J. Qualitative Theory Differ. Equ. 3(2011), 1–15.Google Scholar

  • [35]

    S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equation, Electron. J. Diff. Eqns. 36(2006), 1–12.Google Scholar

  • [36]

    A. Alsaedi, S. Aljoudi, B. Ahmad, Existence of solutions for Riemann-Liouvillle type coupled systems of fractional integro-differential equations and boundary conditions, Electron. J. Diff. Equ., 2016(211) (2016), 1–14.Google Scholar

  • [37]

    M. Chaieb, A. Dhifli, M. Zribi Positive solutions for systems of competitive fractional differential equations, Electron. J. Diff. Equ. Vol. 2016(133) (2016), 1–13.Google Scholar

  • [38]

    R. Caponetto, G. Dongola, L. Fortuna, Frational order systems Modeling and control applications, World Scientific Series on nonlinear science, Ser. A, Vol. 72, World Scientific, Publishing Co. Pvt. Ltd. Singapore, 2010.Google Scholar

  • [39]

    K. Diethelm, Multi-term fractional differential equations, multi-order fractional differential systems and their numerical solution. J. Eur. Syst. Autom. 42(2008), 665–676.Google Scholar

  • [40]

    M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Physica D, 327(2008), 2628–2637.Google Scholar

  • [41]

    M. S. Tavazoei, M. Haeri, Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Anal. 69(2008), 1299–1320.CrossrefGoogle Scholar

  • [42]

    L. J. Guo, Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems, Chin. Phys. 14(2005), 1517–1521.Google Scholar

  • [43]

    W. H. Deng, C. P. Li, Chaos synchronization of the fractional Lu system, Physica A 353(2005), 61–72.CrossrefGoogle Scholar

  • [44]

    I. Petras, Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57(2009), 157–170.CrossrefGoogle Scholar

  • [45]

    I. Petras, Fractional-Order Feedback Control of a DC Motor, J. Electr. Eng. 60(2009), 117–128.Google Scholar

  • [46]

    S. Das, P.K.Gupta, A mathematical model on fractional Lotka-Volterra equations, J. Theor. Biol. 277(2011), 1–6.CrossrefGoogle Scholar

  • [47]

    N Ozalp, I Koca, A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Differ. Equ. 189 (2012), 18pages.Google Scholar

  • [48]

    C. Sulem, P. Sulem, The Nonlinear Schrödinger Equation: self Focusing and Wave Collapse Springer, Berlin, 2000.Google Scholar

  • [49]

    C. C. Tisdell, Basic existence and a priori bound results for solutions to systems of boundary value problems for fractional differential equations, Electron. J. Diff. Equ. 2016(84) (2016), 1–9.Google Scholar

  • [50]

    K. M. Furati, M. Kirane, Necessary conditions for the existence of global solutions to systems of fractional differential equations, Fractional Calculus Appl. Anal. 11(2008), 281–298.Google Scholar

  • [51]

    M. Rehman, R. Khan, A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math. Appl. 61(2011), 2630–2637.CrossrefGoogle Scholar

  • [52]

    J. Wang, H. Xiang, Z. Liu, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ. 2010 (2010), Article ID 186928, 12pages.Google Scholar

  • [53]

    A. Yang, W. Ge, Positive solutions for boundary value problems of N-dimension nonlinear fractional differential systems, Bound. Value Prob. 2008, article ID 437453, 20 pages.

  • [54]

    S. Deng, B. Guo, Generalized homoclinic solutions of a coupled Schrödinger system under a small purterbation, J. Dyn. Diff. Equat. 24(2012), 761–776.CrossrefGoogle Scholar

  • [55]

    C. Sulem, P. Sulem, The Nonhnear Schrödinger Equation: self Focusing and Wave Collapse Springer, Berlin, 2000.Google Scholar

  • [56]

    L. Vaquez, L. Streite, Nonlinear Klein-Gordon and Schrödinger systems: Tbeory and Applictions, World Scientific, Singapore, 1997.Google Scholar

  • [57]

    R. P. Agarwal, M. Benchohra, B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys. 44(2008), 1–21.Google Scholar

  • [58]

    R. Dehghant and K. Ghanbari, Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bull. Iran. Math. Soc. 33(2007), 1–14.Google Scholar

  • [59]

    E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electr. J. Qualitative Theory Differ. Equ. 3(2008), 1–11.Google Scholar

  • [60]

    Y. Liu, Existence of Solutions of a New Class of Impulsive Initial Value Problems of Singular Nonlinear Fractional Differential Systems, Int. J. Nonlinear Sci. Numer. Simul. 17(7–8) (2016), 343–353.Google Scholar

  • [61]

    Y. Liu, Solvability of multi-point boundary value problems for multiple term Riemann-Liouville fractional differential equations, Comput. Math. Appl. 64(4) (2012), 413–431.CrossrefGoogle Scholar

  • [62]

    Y. Liu, Studies on BVPs for IFDEs involved with the Riemann-Liouville type fractional derivatives, Nonautonomous Dyn. Syst. 3(1) (2016), 42–84.Google Scholar

  • [63]

    Y. Liu, Studies on impulsive differential models with multi-term Riemann-CLiouville fractional derivatives, J. Appl. Math. Comput. 52(1) (2016), 529–565.CrossrefGoogle Scholar

  • [64]

    Y. Liu, Existence of global solutions of impulsive IVPs of singular fractional differential systems on half line, Fractional Differ. Calculus 6(1) (2016), 35–56.Google Scholar

  • [65]

    Z. Liu, X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 18(6) (2013), 1362–1373.CrossrefGoogle Scholar

  • [66]

    Z. Liu, L. Lu, I. Szanto, Existence of solutions for fractional impulsive differential equations with p-Laplacian operator, Acta Mathematica Hungarica 141(3) (2013), 203–219.CrossrefGoogle Scholar

  • [67]

    A. M. Nakhushev, The Sturm-Liouville Problem for a Second Order Ordinary Differential equations with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR 234(1977), 308–311.Google Scholar

  • [68]

    S. Z. Rida, H.M. El-Sherbiny and A. Arafa, On the solution of the fractional nonlinear Schr\"(o)dinger equation, Phys. Lett. A 372(2008), 553–558.CrossrefGoogle Scholar

  • [69]

    Z. Wei, W. Dong, J. Che, Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, Nonlinear Anal.: Theor. Meth. Appl. 73(2010), 3232–3238.CrossrefGoogle Scholar

  • [70]

    S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl. 252(2000), 804–812.CrossrefGoogle Scholar

  • [71]

    V. Gupta, J. Dabas, Functional impulsive differential equation of order α ∈ (1,2) with nonlocal initial and integral boundary conditions, Math. Meth. Appl. Sci. 40(7) (2017), 2409–2420.Google Scholar

  • [72]

    Y. Liu, Existence of global solutions of impulsive IVPs of singular fractional differential systems on half line, Fractional Differ. Calculus 6(1) (2016), 35–56.Google Scholar

  • [73]

    Y. Liu, Global Existence of Solutions of a Class of Singular Fractional Differential Equations with Impulse Effects, Matematika 32(1) (2016), 13–29.Google Scholar

  • [74]

    Y. Liu, Existence of solutions of BVPs for a class of IFDEs on half line involving Hardamard fractional derivatives, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 26 pages.Google Scholar

  • [75]

    Y. Liu, P.J.Y. Wong, Global existence of solutions for a system of singular fractional differential equations with impulse effects, J. Appl. Math. Inform. 33(3–4) (2015), 327–342.CrossrefGoogle Scholar

  • [76]

    X. Yang, Y. Liu, Existence of solutions of IVPs of singular multi-term fractional differential equations with impulse effects, Differ. Equ. Control Processes 2(2016), 72–120.Google Scholar

  • [77]

    Y. Liu, Solvability of impulsive (n, n-p) boundary value problems for higher order fractional differential equations, Math. Sci. 10(3) (2016), 71–81.CrossrefGoogle Scholar

  • [78]

    Y. Liu, On piecewise continuous solutions of higher order impulsive fractional differential equations and applications, Appl. Math. Comput. 287(2016), 38–49.Google Scholar

  • [79]

    Y. Liu, Solvability of impulsive periodic boundary value problems for higher order fractional differential equations, Arab. J. Math. 5(2016), 195–214.CrossrefGoogle Scholar

  • [80]

    Y. Liu, Piecewise continuous solutions of initial value problems of singular fractional differential equations with impulse effects, Acta Mathematica Scientia 36(5) (2016), 1492–1508.CrossrefGoogle Scholar

  • [81]

    Y. Liu, New boundary value problems for higher order impulsive fractional differential equations and their solvability, Fractional Differ. Calculus 7(1) (2017), 1–121.Google Scholar

  • [82]

    Y. Liu, S. Li, Periodic boundary value problems of singular fractional differential equations with impulse effects, Malaya J. Math. 3(4) (2015), 423–490.Google Scholar

  • [83]

    R. Agarwal, S. Hristova, D. O’Regan, Stability of solutions to impulsive Caputo fractional differential equations, Electron. J. Diff. Equ. 58(2016), 1–22.Google Scholar

  • [84]

    R. Agarwal, M. Benchohra, S. Hamani, et al., Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18(2) (2011), 235–244.Google Scholar

  • [85]

    A. Arara, M. Benchohra, N. Hamidi and J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal., 72(2) (2010), 580–586.CrossrefGoogle Scholar

  • [86]

    F. Chen and Y. Zhou, Attractivity of fractional functional differential equations, Comput. Math. Appl. 62(3)(2011), 1359–1369.CrossrefGoogle Scholar

  • [87]

    C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal.: Theory, Meth. Appl. 74(17) (2011), 5975–5986.CrossrefGoogle Scholar

  • [88]

    S. Liang, J. Zhang, Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval, Comput. Math. Appl. 61(11) (2011), 3343–3354.CrossrefGoogle Scholar

  • [89]

    S. Liang and J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Modell. 54(5–6) (2011), 1334–1346.CrossrefGoogle Scholar

  • [90]

    X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space, Nonlinear Anal. 74(8) (2011), 2844–2852.CrossrefGoogle Scholar

  • [91]

    X. Su and S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl. 61(4) (2011), 1079–1087.CrossrefGoogle Scholar

  • [92]

    X. Zhao, W. Ge, Some results for fractional impulsive boundary value problems on infinite intervals, Appl. Math. 56(4) (2011), 371–387.CrossrefGoogle Scholar

  • [93]

    Y. Liu, Existence of solutions of a class of impulsive initial value problems of singular nonlinear fractional differential systems, Int. J. Nonlinear Sci. Numer. Simul. 17(7–8) (2016), 343–353.Google Scholar

  • [94]

    Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl. 8(4) (2015), 340–353.Google Scholar

  • [95]

    W. Zou, X. Liu, Existence of solution to a class of boundary value problem for impulsive fractional differential equations, Adv. Differ. Equ. 2014(12)(2014), 12pages.CrossrefGoogle Scholar

  • [96]

    X. Zhang, C. Zhu, Z. Wu, Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Prob. 2013(80) (2013), 23pages.Google Scholar

  • [97]

    K. Zhao, Impulsive integral boundary value problems of the higher-order fractional differential equation with eigenvalue arguments, Adv. Differ. Equ. 2015(382) (2015), 16pages.Google Scholar

  • [98]

    M. Belmekki, J. J. Nieto and R. R. Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. value prob. (1)(2009), 18pages.Google Scholar

  • [99]

    M. A. E. Herzallah, Mild and strong solutions to new types of fractional order nonlinear equations with periodic boundary conditions, Indian J. Pure Appl. Math. 43(6)(2012), 619–635.CrossrefGoogle Scholar

  • [100]

    M. A. E. Herzallah and D. Baleanu, Existence of periodic mild solution for a nonlinear fractional differential equation, Comput. Math. Appl. 64(10) (2012), 3059–3064.CrossrefGoogle Scholar

  • [101]

    J. Wang, Z. Lin, On the impulsive fractional anti-periodic BVP modelling with constant coefficients, J. Appl. Math. Comput. 46(2014), 107–121.CrossrefGoogle Scholar

  • [102]

    Y. Zhang and J. Wang, Nonlocal cauchy problems for a class of implicit impulsive fractional relaxation differential systems, J. Appl. Math. Comput. 52(2016), 323–343.CrossrefGoogle Scholar

  • [103]

    Y. Liu, Survey and new results on boundary value problems of singular fractional differential equations with impulse effects, Electron. J. Diff. Equ. 296(2016), 1–177.Google Scholar

  • [104]

    X. Zhang X, T. Shu, Z. Liu, W. Ding, H. Peng and J. He, On the concept of general solution for impulsive differential equations of fractional-order q∈ (2,3), Open Math. 14(1) (2016), 452–473.Google Scholar

  • [105]

    M. Fekan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17(2012), 3050–3060.CrossrefGoogle Scholar

  • [106]

    G. Wang, B. Ahmad, L. Zhang, A coupled system of nonlinear fractional differential equations with multipoint fractional boundary conditions on an unbounded domain, Abstr. Appl. Anal. 2012, Article ID 248709, 11pages.Google Scholar

  • [107]

    H. Akca, R. Alassar, Y. M. Shebadeh, Neural Networks: Modelling with Impulsive Differential Equations, 5–10 July 2004, Antalya, Turkey-Dynamical Systems and Applications, Proceedings, pp. 32–47.Google Scholar

  • [108]

    J. Lou, L. Chen, T. Ruggeri, An impulsive differential model on post exposure prophylaxis to HIV-1 exposed individual, J. Biol. Syst. 17(4) (2009), 659–683.CrossrefGoogle Scholar

  • [109]

    J. Lou, Y. Lou, J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, J. Math. Biol. 65(4) (2012), 623–652.CrossrefGoogle Scholar

  • [110]

    C. Bai, Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance, Electron. J. Qual. Theory Differ. Equ. 89(2011), 1–19.Google Scholar

  • [111]

    C. Bai, Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance, J. Appl. Math. Comput. 39(1–2) (2012), 421–443.CrossrefGoogle Scholar

  • [112]

    X. Wang, Impulsive boundary value problem for nonlinear differential equations of fractional order, Comput. Math. Appl. 62(5) (2011), 2383–2391.CrossrefGoogle Scholar

  • [113]

    A. Granas, J. Dugundji, Fixed point theory, Springer–Verlag, New York, 2003.Google Scholar

  • [114]

    J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS Regional Conference Series in Math., American Math. Soc. Providence, RI, 1979.

  • [115]

    R. Agarwal, S. Hristova, D. O’Regan, Stability of solutions to impulsive Caputo fractional differential equations, Electron. J. Diff. Equ. 58(2016), 1–22.Google Scholar

  • [116]

    M. A. M. Alwash, Composition vonditions for two–dimensional polynomial systems, Differential Differ. Equ. Appl, 5(1) (2013), 1–12.Google Scholar

  • [117]

    P. J. Torres, Existence of closed solutions for a 6polynomial first order differential equation, J. Math. Anal. Appl. 328(2007), 1108–1116.CrossrefGoogle Scholar

  • [118]

    Y. Xu, Z. He, The short memory principle for solving Abel differential equation of fractional order, Comput. Math. Appl. 62 (12) (2011), 4796–4805.CrossrefGoogle Scholar

  • [119]

    P. K. Singh and T. Som, Fractional Ecosystem Model and Its Solution by Homotopy Perturbation Method, Int. J. Ecosyst. 2(5) (2012), 140–149.CrossrefGoogle Scholar

  • [120]

    E. Zeidler, Nonlinear functional analysis and its applications, I: Fixed point theorems, Springer-Verlag New York Inc., 1986.Google Scholar

About the article

Published Online: 2018-01-09

Published in Print: 2018-04-25


Supported by the Natural Science Foundation of Guangdong province (No:S2011010001900) and the Foundation for High-level talents in Guangdong Higher Education Project.


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 2, Pages 125–152, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0009.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in