Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 2

Issues

Radiant Heat Transfer in Nitrogen-Free Combustion Environments

A. Marzouk Osama
Published Online: 2018-03-07 | DOI: https://doi.org/10.1515/ijnsns-2017-0106

Abstract

When mathematically calculating the radiant heat flux during combustion, the radiant property of a gaseous mixture can be approximated as a weighted sum of the radiant properties of fictitious gases to give an equivalent effect of the actual gas mixture. This concept has been in use for many years. However, it was initially tailored to product gases in air-combustion environment. With the advent and progress in nitrogen-free combustion (particularly for environmental purposes), the chemical composition of the combustion gases is highly altered and existing models should be assessed for their suitability in these new environments. We carried out this task, which was motivated by our recent modeling work that revealed that a new model should be developed for nitrogen-free combustion environments. The model proposed here has four participating gases plus one transparent gas and its performance in predicting radiant heat transfer in 3D benchmark problems is evaluated in comparison with existing models, using the discrete-ordinate method for directional radiation domain combined with the finite-volume method of the spatial domain.

Keywords: radiant; combustion; heat transfer; DOM; nitrogen-free

PACS: 44.40.+a

MSC 2010: 78M50; 74P10; 78A40; 35Q79; 80A20

References

  • [1]

    J. H. Lienhard IV and J. H. Lienhard V, A heat transfer textbook, Fourth Edition, Phlogiston Press, Massachusetts, USA, 2012.Google Scholar

  • [2]

    R. C. Brinker, The surveying handbook, Springer, 2013.

  • [3]

    R. L. Braun and A. K. Burnham, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models, Energy & Fuels 1(2) (1987), 153–161.CrossrefGoogle Scholar

  • [4]

    D. J. Higham, Modeling and simulating chemical reactions, SIAM Rev. 50(2) (2008), 347–368.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    M. Thirumaleshwar, Fundamentals of heat and mass transfer, Second Impression, Pearson Education India, India, 2009.Google Scholar

  • [6]

    D. C. Haworth and M. F. Modest, Radiative heat transfer in turbulent combustion systems: theory and applications, Springer, 2016.

  • [7]

    H. C. Hottel, Chapter 4: radiant heat transmission, in: Heat transmission, Third Edition, W. H. McAdams (Editor), McGraw-Hill, New York, 1954.Google Scholar

  • [8]

    H. C. Hottel, The Melchett lecture for 1960; Radiative transfer in combustion chambers, Inst J. Fuel 34 (1961), 220–234.Google Scholar

  • [9]

    A. F. Sarofim, Radiant Heat Transmission in Enclosures, Sc.D. Dissertation, Department of Engineering Chemical, Massachusetts Institute of Technology, Cambridge, USA, 1962.Google Scholar

  • [10]

    H. C. Hottel and A. F. Sarofim, Radiative transfer, McGraw-Hill, New York, USA, 1967.Google Scholar

  • [11]

    M. K. Denison and B. W. Webb, A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers, J. Heat Transfer 115 (1993), 1004–1012.CrossrefGoogle Scholar

  • [12]

    M. K. Denison and B. W. Webb, The spectral line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media, Heat Transfer J. 117(2) (1995), 359–365.CrossrefGoogle Scholar

  • [13]

    L. Pierrot, P. Riviére, A. Soufiani, and J. Taine, A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases, Quant J. Spectrosc. Radiat. 62(5) (1999), 609–624.CrossrefGoogle Scholar

  • [14]

    M. F. Modest and H. Zhang, The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures, J. Heat Transfer 124(1) (2002), 30–38.CrossrefGoogle Scholar

  • [15]

    M. F. Modest, Radiative heat transfer, Third Edition, Academic Press, USA, 2013.Google Scholar

  • [16]

    C. Yin, Refined weighted sum of gray gases model for air-fuel combustion and its impacts, Energy & Fuels 27(10) (2013), 6287–6294.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    R. Siegel and J. R. Howell, Thermal radiation heat transfer, Fourth Edition, Taylor & Francis, USA, 2002.Google Scholar

  • [18]

    D. De Simone, The direct use of coal : prospects and problems of production and combustion, report by the Office of Technology Assessment, Congress of the States United, Washington, D.C., USA, 1979.Google Scholar

  • [19]

    B. Metz, Carbon dioxide capture and storage, special report of the intergovernmental panel on climate change (IPCC). Working Group III, Cambridge University Press, 2005.Google Scholar

  • [20]

    A. Soufiani and J. Taine, High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2, Int. J. Heat Mass Transfer 40(4) (1997), 987–991.Crossref

  • [21]

    EM2C Lab: Laboratoire d’Energetique Moleculaire et Macroscopique, Combustion du CNR et Ecole Centrale Paris Translation: Molecular and Macroscopic Molecular Energetics Laboratory of CNRS [French national center for scientific research] and Ecole Centrale Paris [Paris Central School], Paris, France, http://www.em2c.ecp.fr/.

  • [22]

    A. Soufiani, J.-M. Hartmann and J. Taine, Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer, Journal of Quantitative Spectroscopy & Radiative Transfer 33(3) (1985), 243–257.CrossrefGoogle Scholar

  • [23]

    P. T. Boggs and J. W. Tolle, Sequential quadratic programming for large-scale nonlinear optimization, J. Comput. Appl. Math. 124(1–2) (2000), 123–137.CrossrefGoogle Scholar

  • [24]

    W. L. Grosshandler, RADCAL: a narrow-band model for radiation calculations in a combustion environment, Technical Note 1402, The U.S. National Institute of Standards and Technology (NIST), 1993.

  • [25]

    D. K. Edwards and W. A. Menard, Correlations for absorption by methane and carbon dioxide gases, Applied Optics 3(7) (1964), 847–852.CrossrefGoogle Scholar

  • [26]

    D. K. Edwards and A. Balakrishnan, Thermal radiation by combustion gases, Int. J. Heat and Mass Transfer 16 (1973), 25–40.CrossrefGoogle Scholar

  • [27]

    D. K. Edwards, Molecular gas band radiation, Adv. Heat Transfer 12 (1976), 115–193.CrossrefGoogle Scholar

  • [28]

    A. T. Modak, Exponential wide band parameters for the pure rotational band of water vapor, J. Quant. Spectrosc. Radiat. Transfer 21 (1979), 131–142.CrossrefGoogle Scholar

  • [29]

    H. C. Hottel, J. J. Noble, A. F. Sarofim, G. D. Silcox, P. C. Wankat and K. S. Knaebel, in: D. W. Green and R. H. Perry (Eds.), Section 5: Heat and Mass Transfer, in Perry’s Chemical Engineers’ Handbook, Eighth Edition, McGraw-Hill, New York, 2007.Google Scholar

  • [30]

    R. Johansson, K. Andersson, B. Leckner and H. Thunman, Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers, Int. J. Heat Mass Transfer 53 (2010), 220–230.CrossrefWeb of ScienceGoogle Scholar

  • [31]

    R. Johansson, B. Leckner, K. Andersson, F. Johansson, Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted- sum-of- grey-gases model, Combust. Flame 158(5) (2011), 893–901.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    G. Krishnamoorthy, M. Sami, S. Orsino, A. Perera, M. Shahnam, E. D. Huckaby, Radiation modelling in oxy-fuel combustion scenarios, Comput Int. J. Dyn Fluid. 24(3–4) (2010), 69–82.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    C. Yin, L. C. R. Johansen, L. A. Rosendahl and S. K. Kær, New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation, Energy & Fuels 24(12) (2010), 6275–6282.Web of ScienceCrossrefGoogle Scholar

  • [34]

    T. F. Smith, Z. F. Shen and J. N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transfer 104 (1982), 602–608.CrossrefGoogle Scholar

  • [35]

    F. Liu, Numerical solutions of three-dimensional non-grey gas radiative transfer using the statistical narrow-band model, J. Heat Transfer 121 (1999), 200–203.CrossrefGoogle Scholar

  • [36]

    P. J. Coelho, Numerical simulation of radiative heat transfer from non-gray gases in three-dimensional enclosures, Quant J. Spectrosc. Radiat. Transfer 74 (2002), 307–328.CrossrefGoogle Scholar

  • [37]

    D. N. Trivic, Modeling of 3-D non-gray gases radiation by coupling the finite volume method with weighted sum of gray gases model, Int J Heat Mass Transfer 47 (2004), 1367–1382.CrossrefGoogle Scholar

  • [38]

    G. Krishnamoorthy, A new weighted-sum-of-gray-gases model for CO2–H2O gas mixtures, Int. Commun. Heat Mass Transfer 37(9) (2010), 1182–1186.Web of ScienceCrossref

  • [39]

    R. Porter, F. Liu, M. Pourkashanian, A. Williams, D. Smith, Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments, Quant J. Spectrosc. Radiat. Transfer 111 (2010), 2084–2094.CrossrefWeb of Science

  • [40]

    O. A. Marzouk and E. D. Huckaby, New weighted sum of gray gases (WSGG) models for radiation calculation in carbon capture simulations: evaluation and different implementation techniques, 7th National Combustion U.S. Meeting of the Institute Combustion, Atlanta, Georgia, March 20–23,paper OT08, 2011.

  • [41]

    V. A. Petrov, Combined radiative and conductive heat transfer in scattering semitransparent materials at high temperatures, Transf Heat. Res. 29(6–8) (1998), 529–534.CrossrefGoogle Scholar

  • [42]

    A. V. Nenarokomov and D. M. Titov, Study of Radiative and Conductive Heat Transfer by the Inverse Problem Method, Heat Transf. Res. 37(3) (2006), 189–198.CrossrefGoogle Scholar

  • [43]

    ANSYS FLUENT User’s Guide, Canonsburg, Pennsylvania, USA.

  • [44]

    H. Zeinivand and F. Bazdidi-Tehrani, Investigation of radiative heat transfer and three thermal radiation models in a turbulent non-premixed methane/air flame, Heat Transf. Res. 42(6) (2011), 571–593.Web of ScienceCrossrefGoogle Scholar

  • [45]

    M. K. Denison and B. W Webb, An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer, J. Quant. Spectrosc. Radiat. Transfer 50(5) (1993), 499–510.CrossrefGoogle Scholar

  • [46]

    L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun and J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer 111(15) (2010), 2139–2150.Web of ScienceCrossrefGoogle Scholar

  • [47]

    R. G. Mortimer, Chemistry Physical, Third Edition, Press Academic, 2008.

About the article

Received: 2017-05-10

Accepted: 2018-01-02

Published Online: 2018-03-07

Published in Print: 2018-04-25


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 2, Pages 175–188, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0106.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in