[1]

Zhikov V. V., Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. **29** (1987), 33–66.CrossrefGoogle Scholar

[2]

Ružička M., Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1784, Springer, Berlin, 2000.Google Scholar

[3]

Chen Y., Levine S., Rao R., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. **66** (2006), 1383–1406.CrossrefGoogle Scholar

[4]

Antontsev S., Shmarev S., Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, 2006 (Chapter 1).Google Scholar

[5]

Halsey T. C., Electrorheological fluids, Science **258** (1992), 761–766.CrossrefGoogle Scholar

[6]

Pfeiffer C., Mavroidis C., Bar-Cohen Y., Dolgin B., Electrorheological fluid based force feedback device, in: Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), 3840, pp. 88–99, 1999.Google Scholar

[7]

Afrouzi G. A., Hadjian A., Heidarkhani S., Steklov problem involving the *p*(x)-Laplacian, Electronic J. Differ. Equ. Vol. **2014**(134) (2014), 1–11.Google Scholar

[8]

Bonanno G., Chinn&‘{i} A., Multiple solutions for elliptic problems involving the *p*(x)-Laplacian, Le Matematiche **LXVI-Fasc. I** (2011), 105–113.Google Scholar

[9]

D’Aguì G., Sciammetta A., Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal. TMA **75** (2012), 5612–5619.Google Scholar

[10]

Deng S. G., Positive solutions for Robin problem involving the *p*(x)-Laplacian, J. Math. Anal. Appl. **360** (2009), 548–560.CrossrefGoogle Scholar

[11]

Heidarkhani S., Ge B., Critical points approaches to elliptic problems driven by a *p*(x)-Laplacian, Ukrainian Math. J. **66** (2015), 1883–1903.CrossrefGoogle Scholar

[12]

Ouaro S., Ouedraogo A., Soma S., Multivalued problem with Robin boundary condition involving diffuse measure data and variable exponent, Adv. Nonlinear Anal. **3** (2014), 209–235.Google Scholar

[13]

Rădulescu V., Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. TMA **121** (2015), 336–369.Google Scholar

[14]

Rădulescu V., Repovš D., Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.Google Scholar

[15]

Repovš D., Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. **13** (2015), 645–661.Google Scholar

[16]

Ni W. M., Serrin J., Existence and non-existence theorems for ground states of quasilinear partial differential equations, The anomalous case, Atti Accd. Naz. Lincei. **77** (1986), 231–257.Google Scholar

[17]

Ni W. M., Serrin J., Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2) Suppl. **8** (1985), 171–185.Google Scholar

[18]

Ni W. M., Serrin J., Non-existence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. **39** (1986), 379–399.CrossrefGoogle Scholar

[19]

Peletier L. A., J. Serrin, Ground states for the prescribed mean curvature equation, Proc. Amer. Math. Soc. **100** (1987), 694–700.Google Scholar

[20]

Afrouzi G. A., Hadjian A., Molica Bisci G., Some remarks for one-dimensional mean curvature problems through a local minimization principle, Adv. Nonlinear Anal. **2** (2013), 427–441.Google Scholar

[21]

Bonanno G., Livrea R., Mawhin J., Existence results for parametric boundary value problems involving the mean curvature operator, Nonlinear Differ. Equ. Appl. **22** (2015), 411–426.CrossrefGoogle Scholar

[22]

Bonheure D., Habets P., Obersnel F., Omari P., Classical and non-classical positive solutions of a prescribed curvature equation with singularities, Rend. Istit. Mat. Univ. Trieste **39** (2007), 63–85.Google Scholar

[23]

Habets P., Omari P., Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math. **9** (2007), 701–730.CrossrefGoogle Scholar

[24]

Bereanu C., Mawhin J., Boundary value problems with non-surjective ϕ-Laplacian and one-sided bounded nonlinearity, Adv. Differ. Equ. **11** (2006), 35–60.Google Scholar

[25]

Faraci F., A note on the existence of infinitely many solutions for the one dimensional prescribed curvature equation, Stud. Univ. Babeş-Bolyai Math. **55** (2010), 83–90.Google Scholar

[26]

Pan H., One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. TMA **70** (2009), 999–1010.Google Scholar

[27]

Afrouzi G. A., Kirane M., Shokooh S., Infinitely many weak solutions for *p*(x)-Laplacian-like problems with Neumann condition, Complex Var. Elliptic Equ., .CrossrefGoogle Scholar

[28]

Avci M., Ni-Serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value Probl. **2013** (2013), 55.CrossrefGoogle Scholar

[29]

Bin G., On superlinear *p*(x)-Laplacian-like problem without Ambrosetti and Rabinowitz condition, Bull. Korean Math. Soc. **51** (2014), 409–421.CrossrefGoogle Scholar

[30]

Cabanillas Lapa E., Pardo Rivera V., Quique Broncano J., No-flux boundary problems involving *p*(x)-Laplacian-like operators, Electron. J. Diff. Equ. **2015**(219) (2015), 1–10.Google Scholar

[31]

Concus P., Finn P., A singular solution of the capillary equation I, II, Invent. Math. **29**(143-148) (1975), 149–159.CrossrefGoogle Scholar

[32]

Heidarkhani S., Salari A., *p*(x)-Laplacian-like problems with Neumann condition originated from a capillary phenomena, preprintGoogle Scholar

[33]

Manuela Rodrigues M., Multiplicity of solutions on a nonlinear eigenvalue problem for *p*(x)-Laplacian-like operators, Mediterr. J. Math. **9** (2012), 211–223.Google Scholar

[34]

Obersnel F., Omari P., Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J. Differ. Equ. **249** (2010), 1674–1725.CrossrefGoogle Scholar

[35]

Shokooh S., Afrouzi G. A., Heidarkhani S., Multiple solutions for *p*(x)-Laplacian-like problems with Neumann condition, Acta Universitatis Apulensis **49** (2017), 111–128.Google Scholar

[36]

Zhou Q. M., On the superlinear problems involving *p*(x)-Laplacian-like operators without AR-condition, Nonlinear Anal. RWA **21** (2015), 161–169.Google Scholar

[37]

Chang K. C., Theory Critical Point and Applications, Shanghai Scientific and Press Technology, Shanghai, 1986.Google Scholar

[38]

Willem M., Theorems Minimax, Birkhauser, Basel, (1996).Google Scholar

[39]

Bonanno G., Molica Bisci G., Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. **2009** (2009), 1–20.Google Scholar

[40]

Ricceri B., A general variational principle and some of its applications, J. Comput. Appl. Math. **113** (2000), 401–410.CrossrefGoogle Scholar

[41]

Molica Bisci G., Rădulescu V., Servadei R., Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016.Google Scholar

[42]

Ferrara M., Molica Bisci G., Existence results for elliptic problems with Hardy potential, Bull. Sci. Math. **138** (2014), 846–859.CrossrefGoogle Scholar

[43]

Galewski M., Bisci G. Molica, Existence results for one-dimensional fractional equations, Math. Meth. Appl. Sci. **39** (2016), 1480–1492.CrossrefGoogle Scholar

[44]

Heidarkhani S., Afrouzi G.A., Ferrara M., Caristi G., Moradi S., Existence results for impulsive damped vibration systems, Bull. Malays. Math. Sci. Soc., DOI: .CrossrefGoogle Scholar

[45]

Heidarkhani S., Afrouzi G. A., Henderson J., Moradi S., Caristi G., Variational approaches to *p*-Laplacian discrete problems of Kirchhoff-type, J. Differ. Equ. Appl. **23** (2017), 917–938.CrossrefGoogle Scholar

[46]

Heidarkhani S., G. Afrouzi A., S. Moradi, Existence of weak solutions for three-point boundary-value problems of kirchhoff-type, Electron. J. Differ. Equ. **2016**(234) (2016), 1–13.Google Scholar

[47]

Heidarkhani S., Afrouzi G. A., Moradi S., Caristi G., Ge B., Existence of one weak solution for *p*(x)-biharmonic equations with Navier boundary conditions, Zeitschrift fuer Angewandte Mathematik und Physik (2016), 67:73, DOI .CrossrefGoogle Scholar

[48]

Heidarkhani S., Ferrara M., Afrouzi G. A., Caristi G., Moradi S., Existence of solutions for Dirichlet quasilinear systems including a nonlinear function of the derivative, Electronic J. Diff. Equ., Vol. **2016**(56) (2016), 1–12.Google Scholar

[49]

Heidarkhani S., Zhou Y., Caristi G., Afrouzi G. A., Moradi S., Existence results for fractional differential systems through a local minimization principle, Comput. Math. Appl. (2016), .CrossrefGoogle Scholar

[50]

Molica Bisci G., Rădulescu V., Bifurcation analysis of a singular elliptic problem modelling the equilibrium of anisotropic continuous media, Topol. Methods Nonlinear Anal. **45** (2015), 493–508.CrossrefGoogle Scholar

[51]

Molica Bisci G., Servadei R., A bifurcation result for non-local fractional equations, Anal. Appl. **13** (2015), 371–394.CrossrefGoogle Scholar

[52]

Molica Bisci G., Servadei R., Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, Adv. Differ. Equ. **20** (2015), 635–660.Google Scholar

[53]

Bonanno G., Candito P., Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal. **88** (2009), 605–616.CrossrefGoogle Scholar

[54]

Heidarkhani S., Infinitely many solutions for systems of *n* two-point Kirchhoff-type boundary value problems}, Ann. Polon. Math. **107** (2013), 133–152.Crossref

[55]

Fan X. L., Zhang Q. H., Existence of solutions for *p*(x)-Laplacian Dirichlet problem, Nonlinear Anal. TMA **52** (2003), 1843–1852.Google Scholar

[56]

Fan X. L., Zhao D., On the generalize Orlicz-Sobolev space *W*^{k,p(x)}(Ω), J. Gansu Educ. College **12** (1998), 1–6.

[57]

Fan X. L, Zhao D., On the spaces *L*^{p(x)}(Ω) and *W*^{m,p(x)}(Ω), J. Math. Anal. Appl. **263** (2001), 424–446.Crossref

[58]

Kováčik O., Rákosník J., On the spaces and *L*^{p(x)}(Ω) and *W*^{1,p(x)}(Ω) Czechoslovak Math. **41** (1991), 592–618.Google Scholar

[59]

Sanko S. G., Denseness of *C*_{0}^{∞}(ℝ^{N}) in the generalized Sobolev spaces *W*^{m,p(x)}(ℝ^{N}), Dokl. Ross. Akad. Nauk. **369** (1999), 451–454.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.