Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 2

Issues

Numerical Investigation of the Wave-Front Tracking Algorithm for the Full Ultra-Relativistic Euler Equations

Mahmoud A.E. Abdelrahman
Published Online: 2018-02-08 | DOI: https://doi.org/10.1515/ijnsns-2017-0121

Abstract

We introduce a generalized version of the front tracking algorithm for the full ultra-relativistic Euler system. The construction and analysis of this algorithm are somewhat simpler than other algorithms. Moreover, this scheme leads to a more robust and efficient result. The scheme also satisfies positivity. This scheme is compared with other two schemes by two numerical test cases. Furthermore we give another application of this scheme, namely we check the explicit formula of interaction of two generalized shocks, by further numerical test case.

Keywords: conservation laws; relativistic Euler equations; shock waves,non-entropy shocks; front tracking; cone grid scheme; Godunov scheme

MSC 2010: 35L45; 35L60; 35L65; 35L67; 65M99; 76Y05

References

  • [1]

    Abdelrahman M. A. E. and Kunik M., The interaction of waves for the ultra-relativistic Euler equations, J. Math. Anal. Appl. 409 (2014), 1140–1158.Google Scholar

  • [2]

    Abdelrahman M. A. E. and Kunik M., The Ultra-Relativistic Euler Equations, Math. Meth. Appl. Sci. 38 (2015), 1247–1264.CrossrefGoogle Scholar

  • [3]

    Abdelrahman M. A. E., Global Solutions for the Ultra- Relativistic Euler Equations, Nonlinear Anal. 155 (2017), 140–162.Google Scholar

  • [4]

    Kunik M., Qamar S., Warnecke G., Kinetic schemes for the ultra-relativistic Euler equations, J. Comput. Phys. 187 (2003), 572–596.Google Scholar

  • [5]

    Kunik M., Initial Selected and Boundary Value Problems for Hyperbolic Systems and Kinetic Equations, Habilitation thesis, Otto-von-Guericke University Magdeburg, (2005).Google Scholar

  • [6]

    Smoller J. and Temple B. Global Solutions of the Relativistic Euler Equations, Commun. Math. Phys 156 (1993), 67–99.CrossrefGoogle Scholar

  • [7]

    Baiti P. and Jenssen H. K., On the front tracking algorithm, J. Math. Anal. Appl. 217 (1998), 395–404.CrossrefGoogle Scholar

  • [8]

    Bressan A., Global solutions to systems of conservation laws by wavefront tracking, J. Math. Anal. Appl. 170 (1992), 414–432.CrossrefGoogle Scholar

  • [9]

    Bressan A., Lecture Notes on Conservation Laws, S.I.S.S.A., Trieste (1995).Google Scholar

  • [10]

    Dafermos C. M., Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972), 33–41.CrossrefGoogle Scholar

  • [11]

    Diperna R. J., Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Comm. Differ. Equ. 20 (1976), 187–212.CrossrefGoogle Scholar

  • [12]

    Risebro N. H., Tveito A., A front tracking method for conservation laws in one dimension, J. Comput. Phys 101 (1992), 130–139.CrossrefGoogle Scholar

  • [13]

    Risebro N. H., A front tracking alternative to the random choice method, Proc. Am. Math. Soc. 117 (1993), 1125–1139.CrossrefGoogle Scholar

  • [14]

    Witteveen J. A. S., Koren B. and Bakker P. G. An improved front tracking method for the Euler equations, J. Comput. Phys. 224 (2007), 712–728.Web of ScienceCrossref

  • [15]

    Abdelrahman M. A. E. and Kunik M., A new Front Tracking Scheme for the Ultra-Relativistic Euler Equations, J. Comput. Phys. 275 (2014), 213–235.Web of ScienceCrossrefGoogle Scholar

  • [16]

    Godunov S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47 (1959), 271–306.Google Scholar

  • [17]

    Toro E. F., Riemann solvers and numerical methods for fluid dynamics: A practical Peer Review Only introduction, Springer, Berlin, 2009.Google Scholar

About the article

Received: 2017-06-05

Accepted: 2017-12-08

Published Online: 2018-02-08

Published in Print: 2018-04-25


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 2, Pages 223–229, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0121.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in