Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 2

Issues

Global Mittag–Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays

Ramziya Rifhat
  • Institute of Mathematical Physics, Xinjiang University Urumqi 830046, Xinjiang Wulumuqi, Peoples Republic of China
  • College of Mathematics and System Sciences, Xinjiang University Urumqi 830046, Urumqi, Peoples Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmadjan Muhammadhaji
  • Corresponding author
  • College of Mathematics and System Sciences, Xinjiang University Urumqi 830046, Urumqi, Peoples Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhidong Teng
  • College of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830011, Wulumuqi, Peoples Republic of China
  • College of Mathematics and System Sciences, Xinjiang University Urumqi 830046, Urumqi, Peoples Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-17 | DOI: https://doi.org/10.1515/ijnsns-2017-0179

Abstract

In this paper, we investigate the synchronization problem of impulsive fractional-order neural networks with both time-varying and distributed delays. By using the fractional Lyapunov method and Mittag–Leffler function, some sufficient conditions are derived to realize the global Mittag–Leffler synchronization of impulsive fractional-order neural networks and one illustrative example is given to demonstrate the effectiveness of the obtained results.

Keywords: Global Mittag–Leffler synchronization,impulsive fractional functional differentialequations; neural networks; time-varying delays; distributed delays

MSC 2010: 34K37; 34K20; 34K60; 34A37

References

  • [1]

    Benchohra M., Henderson J., Ntouyas S., Equations Impulsive Differential and Inclusions[M], Hindawi Publishing Corporation, New York, 2006.

  • [2]

    Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations[M], World Scientific, Singapore, 1989.

  • [3]

    Stamova I., Stability Analysis of Impulsive Functional Differential Equations[M], Walter de Gruyter, Berlin, 2009.

  • [4]

    Stamov G. T., Impulsive cellular neural networks and almost periodicity, Proc. Jpn Acad. 80(10) (2004), 198–203.Google Scholar

  • [5]

    Li X., Wu J., Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63–69.Google Scholar

  • [6]

    Li X., Song S., Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control. 62(1) (2017), 406–411.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Li X., Cao J., An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Trans. Autom. Control. 62 (2017), 3618–3625.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    Muhammadhaji A., Abdurahman A., Jiang H., Finite-Time synchronization of complex dynamical networks with time-varying delays and nonidentical nodes, J. Control Sci. Eng. 2017 (2017), Article ID 5072308, 13, doi:.Crossref

  • [9]

    Abdurahman A., Jiang H., Teng Z., Finite-time synchronization for fuzzy cellular neural networks withtime-varying delays, Fuzzy Sets Syst. 297 (2016), 96–111.

  • [10]

    Abdurahman A., Jiang H., Teng Z., Function projective synchronization of impulsive neural networks with mixed time-varying delays, Nonlinear Dyn. 78 (2014), 2627–2638.Google Scholar

  • [11]

    Abdurahman A., Jiang H., Teng Z., Finite-time synchronization for memristor-based neural networks with time-varying delays, Neural Networks 69 (2015), 20–28.

  • [12]

    Chen L., Qu J., Chai Y., Wu R., Qi G., Synchronization of a class of fractional-order chaotic neural networks, Entropy 15(8) (2013), 3265–3276.

  • [13]

    Huang X., Zhao Z., Wang Z., Li Y., Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing 94(3) (2012), 13–21.

  • [14]

    Kaslik E., Sivasundaram S., Nonlinear dynamics and chaos in fractional-order neural networks, Networks Neural 32(1) (2012), 245–256.

  • [15]

    Wang F., Yang Y., Xu X., Li L., Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay, Neural Comput. Appl. 28(2) (2017), 1–8.Google Scholar

  • [16]

    Stamova I., T. Stamov, N. Simeonova, Impulsive control on global exponential stability for cellular neural networks with supremums, J. Vib. Control 19(4) (2013), 483–490.

  • [17]

    Zhang S., Yu Y., Wang H., Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Anal. Hybrid Syst. 16 (2015), 104–121.Google Scholar

  • [18]

    Chen L., Chai Y., Wu R., Ma T., Zhai H., Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111(6) (2013), 190–194.Google Scholar

  • [19]

    Wu R., Hei X., Chen L., Finite-time stability of fractionalorder neural networkswith delay, Commun. Theor. Phys. 60(8) (2013), 189–193.

  • [20]

    Li Y., Chen Y., Podlubny I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl. 59(5) (2010), 1810–1821.Google Scholar

  • [21]

    Yang X., Li C., Huang T., Song Q., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput. 293 (2017), 416–422.Google Scholar

  • [22]

    Yang X., Li C., Song Q., Chen X., Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks, Neurocomputing 207 (2016), 276–286.

  • [23]

    Huang T., Li C., Duan S., Starzyk J., Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects, IEEE Trans.Neural Networks Learn. Syst. 23(6) (2012), 866–875Google Scholar

  • [24]

    Wang J., Wu H., Huang T., Ren S., Wu J., Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength, IEEE Trans.Neural Networks Learn. Syst. 99 (2016), 1–13.Google Scholar

  • [25]

    Razumikhin B., Stability of Hereditary Systems[M], Nauka Moscow, 1988.

  • [26]

    Yan J., Shen J., Impulsive stabilization of functional differential equations by Lyapunov-Razumikhin functions, Nonlinear Anal. 37(2) (1999), 245–255.

  • [27]

    Lu H., C. Leeuwen, Synchronization of chaotic neural networks via output or state coupling. Chaos Solitons Fractals 30(1) (2006), 166–176.Google Scholar

  • [28]

    Yang Y., Cao J., Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A 386(1) (2007), 492–502.

  • [29]

    Stamov G., Stamova I., Almost periodic solutions for impulsive neural networks with delay. Appl. Math. Modell. 31 (2007), 1263–1270.Google Scholar

  • [30]

    Stamova I., Stamov G. Stability analysis of impulsive functional systems of fractional order, Commun. Nonlinear Sci. Numer. Simul. 19(3) (2014), 702–709.Google Scholar

About the article

Accepted: 2018-01-05

Received: 2017-08-14

Published Online: 2018-03-17

Published in Print: 2018-04-25


This research is supported by the National Natural Science Foundation of China [grant number 11601464], [grant number 11702237] and the Starting research Fund for the Xinjiang University doctoral graduates [grant number BS150202].


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 2, Pages 205–213, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0179.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in