[1]

Corréa F. J. S. A. and Figueiredo G. M., On a *p*-Kirchhoff equation via Krasnoselskii’S genus, Appl. Math. Lett. **22** (2009), 819–822.CrossrefGoogle Scholar

[2]

Dai G. and Liu D., Infinitely many positive solutions for a *p(x)*-Kirchhoff-type equation, J. Math. Anal. Appl. **359** (2009), 710–764.Web of ScienceGoogle Scholar

[3]

He X. and Zou W., Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. **70** (2009), 1407–1414.Google Scholar

[4]

Jin J. and Wu X., Infinitely many radial solutions for Kirchhoff-type problems in ℝ^{N}, J. Math. Anal. Appl. **369** (2010), 564–574.CrossrefWeb of ScienceGoogle Scholar

[5]

Kirchhoff G., Mechanik, Teubner, Leipzig, 1883.Google Scholar

[6]

Alves C. O., F. J. S. A. Corréa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. **49** (2005), 85–93.CrossrefGoogle Scholar

[7]

Fiscella A. and Valdinoci E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. **94** (2014), 156–170.CrossrefWeb of ScienceGoogle Scholar

[8]

Naimen D., Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, Nonlinear Differ. Equ. Appl. **21** (2014), 885–914.CrossrefWeb of ScienceGoogle Scholar

[9]

He Y., Li G. and Peng S., Concentrating bound states for Kirchhoff type problem involving critical Sobolev exponents, Adv. Nonlinear Stud. **14** (2014), 483–510.Google Scholar

[10]

Wang J., L. Tian, J. Xu and Zhang F., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ. **253** (2012), 2314–2351.CrossrefWeb of ScienceGoogle Scholar

[11]

Brézis H. and Nirenberg L., Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Comm. Pure Appl. Math. **36** (1983), 437–477.CrossrefGoogle Scholar

[12]

Lions P. L., The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoam. **1** (1985), 145–201.Google Scholar

[13]

Perera K., Squassina M. and Yang Y., Birfucation and multiplicity results for critical fractional *p*-Laplacian problems, Math. Nachr. **289** (2016), 332–342.Google Scholar

[14]

D’Ancona P. and Spagnolo S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. **108**} (1992), 247–262.CrossrefGoogle Scholar

[15]

Xiang M., Zhang B. and Ferrara M., Existence of solutions for Kirchhoff type problem involving the non-local fractional *p*-Laplacian, J. Math. Anal. Appl. **424** (2015), 1021– 1041.Google Scholar

[16]

Adams R., Spaces Sobolev, Press Academic, York New, 1975.Google Scholar

[17]

Agarwal R., Perera K. and Zhang Z., On some nonlocal eigenvalue problems, Discrete Contin. Dyn. Syst. **S 5** (2012), 707–714.Google Scholar

[18]

Fadell E. and Rabinowitz P., Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. **45** (1978), 139–174.CrossrefGoogle Scholar

[19]

Benci V., On critical point theory for indefinite functionals in the presence of symmetrics, Trans. Amer. Math. Soc. **274** (1982), 533–572.CrossrefGoogle Scholar

[20]

Perera K., Squassina M. and Yang Y., Bifurcation and multiplicity results for critical *p*-Laplacian problems, Topol. Methods Nonlinear Anal.**47** (2016), 187–194.Google Scholar

[21]

Xiang M., Zhang B. and Zhang X., A nonhomogeneous fractional *p*-Kirchhoff type problem involving critical exponent in ℝ^{N}, Adv. Stud Nonlinear. **17** (2017), 611–640.Web of ScienceGoogle Scholar

[22]

Perera K., Agarwal R. P. and O’Regan D., Morse theoretic aspects of *p*-Laplacian type operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.