Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

See all formats and pricing
More options …
Volume 19, Issue 3-4


Modeling of Supersonic/Hypersonic Boundary Layer Transition Using a Single-Point Approach

Lei Qiao / Jun-Qiang Bai / Jia-Kuan Xu / Jing-Lei Xu / Yang Zhang
Published Online: 2018-04-05 | DOI: https://doi.org/10.1515/ijnsns-2017-0011


During the process of aerodynamic shape design of supersonic and hypersonic space planes, laminar flow design and boundary layer transition prediction play important roles in aero-thermal numerical simulations and aero-thermal protection design. Therefore, in this study, a computational fluid dynamics compatible transition closure model for high speed laminar-to-turbulent transitional flows is formulated with consideration of the analysis results from stability theory. The proposed model contains two transport equations to describe the transition mechanism using local variables. Specifically, the eddy viscosity of laminar fluctuations and intermittency factor are chosen to be the characteristic parameters and modeled by transport equations. Accounting for the dominant instability modes at supersonic/hypersonic conditions, the first- and second- modes are modeled using local variables through the analysis of laminar self-similar boundary layers. Then, the present transition model is applied with compressibility corrected k-ω shear stress transport turbulence model. Thus, as the main significance of the current work, the present model is enabled to capture the overshoot phenomena as well as predict the transition onset position. Finally, comparisons between the predictions using the present model and the wind tunnel experimental results of several well-documented flow cases are provided to validate the proposed transition turbulence model.

Keywords: boundary layer transition; supersonic/ hypersonic flows; laminar fluctuations; intermittency

PACS: 47.10.ab


  • [1]

    Papp J.L. and Dash S.M., Rapid Engineering approach to modeling hypersonic laminar to turbulent transitional flows, J. Spacecraft Rockets. 42 (2005), 467–475.Google Scholar

  • [2]

    Wang L., S. Fu et al., A modular RANS approach for modeling laminar-turbulent transition in turbomachinery flows, Heat Fluid Int. J. Flow. 34 (2012), 62–69.

  • [3]

    Mack L.M., Boundary-layer linear stability theory, AGARD Report No. 709 (1986).

  • [4]

    Zhong X. and Wang X., Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers, Annu. Rev. Fluid Mech. 44 (2012), 527–561.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Zhong X., High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition, Appl. Mech. Rev. 61 (2008), 030802.

  • [6]

    Lee C.B. and Wu J.Z., Transition in wall-bounded flows, Appl. Mech. Rev. 61 (2008), 030802.Google Scholar

  • [7]

    Zhang C.H., Tang Q. and Lee C.B., Hypersonic boundary-layer transition on a flared cone, Acta Mech. Sin. 29 (2013), 48–53.Google Scholar

  • [8]

    Smith A.M.O. and Gamberoni N., Transition, pressure gradient and stability theory, Douglas Aircraft Company, Long Beach, CA, Report ES-26388 (1956).Google Scholar

  • [9]

    van Ingen J. L., A suggested semi-empirical method for the calculation of the boundary layer transition region, Delft University of Technology, Delft, The Netherlands, Report VTH-74 (1956).Google Scholar

  • [10]

    Bradshaw P., Turbulence: the chief outstanding difficulty of our subject, Exp. Fluids 16 (1994), 203–216.

  • [11]

    Mayle R.E. and Schulz A., The path to predicting bypass transition, J. Turbomach. 119 (1997), 405–411.Google Scholar

  • [12]

    Lardeau S., Fadai-Ghotbi A. and Leschziner M., Modeling bypass transition and separation-induced transition by reference to pre-transitional fluctuation energy, ERCOFTAC Bull. 80 (2009), 72–76.

  • [13]

    Walters D.K. and Leylek J.H., A new model for boundary layer transition using a single-point RANS approach, ASME J. Turbomach. 126 (2004), 193–202.

  • [14]

    Xu J.K., Bai J.Q., L. Qiao et al., Fully local formulation of a transition closure model for transitional flow simulations, AIAA J. 54 (2016), 3015–3023.

  • [15]

    Warren E.S., J.E. Harris and Hassan H.A., Transition model for high-speed flow, AIAA J. 33 (1995), 1391–1397.Google Scholar

  • [16]

    Warren E.S. and Hassan H.A., Transition closure model for predicting transition onset, J. Aircraft 35 (1998), 769–775.

  • [17]

    McDaniel R.D., Nance R.P. and Hassan H.A., Transition onset prediction for high-speed flow, J Spacecraft Rockets. 37 (2000), 304–309.

  • [18]

    Papp J. and Dash S.M., Modeling hypersonic laminar to turbulent transitional flows for 3D geometries using two-equation onset and intermittency transport models, AIAA Paper 2012–0449 (2012).

  • [19]

    Song B. and Lee C.H., A Favr averaged transition prediction model for hypersonic flows, Sci. China Tech. Sci. 53 (2010), 2049–2056.

  • [20]

    Menter F.R., R.B. Langtry et al., A correlation-based transition model using local variables part I: Model formulation, J. Turbomach. 128 (2004), 413–422.

  • [21]

    Menter F.R., R.B. Langtry et al., A correlation-based transition model using local variables part II: Test cases and industrial applications, J. Turbomach. 128 (2004), 423–434.

  • [22]

    Langtry R.B. and Menter F.R., Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA J. 47 (2009), 2894–2906.

  • [23]

    Langtry R.B. and Menter F.R., Extending the [aa] local correlation based transition model for crossflow effects, AIAA Paper 2015–2474 (2015).

  • [24]

    Xia C.C. and Chen W.F., Boundary-layer transition prediction using a simplified correlation-based model, Chinese J. Aeronaut. 29 (2016), 66–75.

  • [25]

    Walters D.K. and Cokljat D., A three equation eddy viscosity model for Reynolds Averaged Navier Stokes simulations of transitional flow, J. Fluids Eng. 130 (2008), 121401.Google Scholar

  • [26]

    Coder J.G. and Maughmer M.D., A CFD-compatible transition model using an amplification factor transport equation, AIAA Paper 2013–0253 (2013).

  • [27]

    Coder J.G. and Maughmer M.D., Computational fluid dynamics compatible transition modeling using an amplification factor transport equation, AIAA J. 52 (2014), 2506–2512.Google Scholar

  • [28]

    Xu J.K., Bai J.Q., Y. Zhang et al., Transition study of 3D aerodynamic configures using improved transport equations modeling, Chinese J. Aeronaut. 29 (2016), 874–881.

  • [29]

    Fu S. and Wang L., RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory, Prog. Aerosp. Sci. 58 (2013), 36–59.

  • [30]

    Wang L. and Fu S., Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition, Flow Turbul. Combust. 87 (2011), 165–187.Web of ScienceCrossrefGoogle Scholar

  • [31]

    Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994), 1598–1605.Google Scholar

  • [32]

    Aziz A. and Na T.N., New approach to the solutions of Falkner-Skan equation, AIAA J. 19 (1981), 1242–1244.

  • [33]

    Harris J.E., Numerical solution of flow equations for laminar, transitional, and turbulent compressible boundary layer for planar or axisymmetric flows, NASA-TR R-368 (1971).

  • [34]

    Walker G.J., Transitional flow on axial turbomachine blading, AIAA J. 27 (1989), 595–602.Google Scholar

  • [35]

    Qbremski H.J., Morkovin M.V. and Landahl M., A portfolio of stability characteristics of incompressible boundary layer, AGARD R-134 (1969).

  • [36]

    Menter F.R., Smirnov P.E., Liu T. T and R. Avancha, A one-equation local correlation-based transition model, Flow Turbul. Combust. 95 (2015), 1–37.

  • [37]

    Narasimha R., The laminar-turbulent transition zone in the boundary layer, Prog. Aerosp. Sci. 22 (1985), 29–80.

  • [38]

    DeChant L.J., Laminar turbulent intermittency models: Determination of functional behavior using an asymptotic differential equation argument, AIAA Paper 2015–0586 (2015).

  • [39]

    Wilcox D.C., Turbulence modelling for CFD, DCW Industries, La Canada, CA, Chapter 3 (1992).Google Scholar

  • [40]

    Sarkar S., Erlebacher G. and Hussaini M.Y., The analysis and modelling of dilatational terms in compressible turbulence, Fluid Mech J.. 227 (1991), 473–493.

  • [41]

    Sarkar S., The pressure dilatation correlation in compressible flows, Phys. Fluids A. 4 (1992), 2674–2682.

  • [42]

    Sarkar S., The stabilizing effect of compressibility in turbulent shear flow, Fluid Mech J.. 282 (1995), 163–186.

  • [43]

    Gao H., Fu D.X., Ma Y.W. and Li X.L., Direct numerical simulation of supersonic boundary layer flow, Chinese Phys. Lett. 22 (2005), 1709–1712.CrossrefGoogle Scholar

  • [44]

    Li X.L., Fu D.X. and Ma Y.W., DNS of compressible turbulent boundary layer over a blunt wedge, Sci. China Ser. G. 48 (2005), 129–141.CrossrefGoogle Scholar

  • [45]

    Chen F.J., Malik M.R. and Beckwith I.E., Boundary-layer transition on a cone and flat plate at Mach 3.5, AIAA J. 27 (1989), 687–693.Google Scholar

  • [46]

    Horvath T.J., Berry S.A., B.R. Hollis et al., Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels, AIAA Paper 2002–2743 (2002).

  • [47]

    Reinartz B. and Ballmann J., Computation of hypersonic double wedge shock/boundary layer interaction, 26th International Symposium on Shock Waves, Germany, Paper No. 1300 (2007).

  • [48]

    Neuenhahn T. and Olivier H., Influence of the wall temperature and entropy layer effects on double wedge shock boundary layer interactions, AIAA Paper 2006–8136 (2006).

  • [49]

    Krause M., Behr M. and Ballmann J., Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model, AIAA Paper 2008–2598 (2008).

About the article

Received: 2017-01-12

Accepted: 2017-05-25

Published Online: 2018-04-05

Published in Print: 2018-06-26

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 3-4, Pages 263–274, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0011.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in