Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year

IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

See all formats and pricing
More options …
Volume 19, Issue 3-4


A Novel Macromodel based on Krylov Subspace Projection Method for Micromixers with Serpentine Channels

Xueye Chen
  • Corresponding author
  • Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shuai Zhang
Published Online: 2018-06-05 | DOI: https://doi.org/10.1515/ijnsns-2017-0013


A novel macromodel based on Krylov subspace projection method for micromixers with serpentine channels is presented. The physical equations are discretized using Galerkin method. The orthogonal basis is obtained and the discrete matrix is assembled with Arnoldi procedure based on Krylov subspace projection. The obtained macromodel can be used to calculate the concentration of the sample at arbitrary location of serpentine micromixers. The maximal relative deviation is 2 % between macromodel and only numerical simulation. The computational efficiency of the macromodel will be improved significantly with the numbers of serpentine channels increasing. Simulation results demonstrated that the macromodel is flexible, effective and easily operated for rapid design and computation of serpentine micromixers.

Keywords: serpentine micromixer; macromodel; model order reduction; Krylov subspace


  • [1]

    O.H. Shapiro, E. Kramarsky-Winter, A.R. Gavish, et al., A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals[J], Nat. Commun. 7 (2016), 1–9.Web of ScienceGoogle Scholar

  • [2]

    M. Ballard, D. Owen, Z.G. Mills, et al., Orbiting magnetic microbeads enable rapid microfluidic mixing[J], Microfluid Nanofluidics 20(6) (2016), 1–13.Web of ScienceGoogle Scholar

  • [3]

    Z.M. Malecha and K. Malecha, Numerical analysis of mixing under low and high frequency pulsations at serpentine micromixers[J], Chem. Process Eng. 35(3) (2014), 369–385.Web of ScienceGoogle Scholar

  • [4]

    X. Chen, T. Li, H. Zeng, et al., Numerical and experimental investigation on micromixers with serpentine microchannels[J], Int. J. Heat Mass Transf. 98 (2016), 131–140.Web of ScienceCrossrefGoogle Scholar

  • [5]

    X. Chen, T. Li and J. Shen, CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips[J], Int. Polymer Process. 31(2) (2016), 233–238.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    D. Konstantinou, A. Shirazi, A. Sadri, et al., Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices[J], Sens. Actuators B Chem. 234 (2016), 209–221.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Z. Yin, E. Cheng and H. Zou, A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography[J], Lab. Chip 14(9) (2014), 1614–1621.Web of ScienceCrossrefGoogle Scholar

  • [8]

    B.D. Stępak, A.J. Antończak and K.M. Abramski, Rapid fabrication of microdevices by controlling the PDMS curing conditions during replication of a laser-prototyped mould[J], J. Micromech. Microeng. 25(10) (2015), 107001.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    K. Malecha, L.J. Golonka, J. Bałdyga, et al., Serpentine microfluidic mixer made in LTCC[J], Sens. Actuators B Chem. 143(1) (2009), 400–413.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    K. Malecha, D.G. Pijanowska, L.J. Golonka, et al., LTCC microreactor for urea determination in biological fluids[J], Sens. Actuators B Chem. 141(1) (2009), 301–308.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    A.K. Au, N. Bhattacharjee, L.F. Horowitz, et al., 3D-printed microfluidic automation[J], Lab. Chip 15(8) (2015), 1934–1941.Web of ScienceCrossrefGoogle Scholar

  • [12]

    X. Chen and T. Li, A novel design for passive micromixers based on topology optimization method[J], Biomed, Microdevices 18(4) (2016), 1–15.Google Scholar

  • [13]

    Y. Wang, H. Song and K. Pant, A reduced-order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems[J], Microfluid Nanofluidics 16(1–2) (2014), 369–380.Web of ScienceCrossrefGoogle Scholar

  • [14]

    X. Chen, C. Liu, Z. Xu, et al., Macro-micro modeling design in system-level and experiment for a micromixer[J], Anal. Methods 4(8) (2012), 2334–2340.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Z. Xu, Y. Yang, D. Vadillo, et al., A mathematical model of mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow[J], Appl. Phys. Lett. 100(4) (2012), 041907.Web of ScienceCrossrefGoogle Scholar

  • [16]

    A.N. Chatterjee and N.R. Aluru, Combined circuit/device modeling and simulation of integrated microfluidic systems[J], J. Microelectromech. Syst. 14(1) (2005), 81–95.CrossrefGoogle Scholar

  • [17]

    H. Song, Y. Wang and K. Pant, Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: A phase diagram study using a three-dimensional analytical model[J], Microfluid Nanofluidics 12(1–4) (2012), 265–277.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    D. Vasilyev, M. Rewieński and J. White, Macromodel generation for BioMEMS components using a stabilized balanced truncation plus trajectory piecewise linear approach[M], in: Design Automation Methods and Tools for Microfluidics-Based Biochips, pp. 169–187, Cambridge, MA: Springer Netherlands, 2006.Google Scholar

  • [19]

    R. Qiao and N.R. Aluru, A compact model for electroosmotic flows in microfluidic devices[J], J. Micromech. Microeng. 12(5) (2002), 625.CrossrefGoogle Scholar

  • [20]

    R. Cheng, T. Zhu and L. Mao, Three-dimensional and analytical modeling of microfluidic particle transport in magnetic fluids[J], Microfluid Nanofluidics 16(6) (2014), 1143–1154.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Y. Wang, Q. Lin and T. Mukherjee, Applications of behavioral modeling and simulation on a lab-on-a-chip: Micro-mixer and separation system[C]. Behavioral Modeling and Simulation Conference, 2004. BMAS 2004. Proceedings of the 2004 IEEE International. IEEE, 2004: 8–13.Google Scholar

  • [22]

    A.S. Bedekar, Y. Wang, S. Krishnamoorthy, et al., System-level simulation of flow induced dispersion in lab-on-a-chip systems [M], in: Design Automation Methods and Tools for Microfluidics-Based Biochips, pp. 189–214, Cambridge, MA: Springer Netherlands, 2006.Google Scholar

About the article

Received: 2017-01-15

Accepted: 2017-11-08

Published Online: 2018-06-05

Published in Print: 2018-06-26

This work was supported by Liaoning Province Doctor Startup Fund (20141131), Fund of Liaoning Province Education Administration (L2014241), and the Fund in Liaoning University of Technology (X201301).

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 3-4, Pages 275–280, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0013.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in