Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2016: 0.890

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2016: 0.07

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 3-4

Issues

Positivity and Stability of Standard and Fractional Descriptor Continuous-Time Linear and Nonlinear Systems

Tadeusz KaczorekORCID iD: http://orcid.org/0000-0002-1270-3948
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/ijnsns-2017-0049

Abstract

The positivity and stability of standard and fractional descriptor continuous-time linear and nonlinear systems are addressed. Necessary and sufficient conditions for the positivity of descriptor linear and sufficient conditions for nonlinear systems are established. Using an extension of Lyapunov method sufficient conditions for the stability of positive nonlinear systems are given. The considerations are extended to fractional nonlinear systems.

Keywords: descriptor; linear; nonlinear; fractional; system; positivity; stability

References

  • [1]

    T. Kaczorek, Selected problems of fractional systems theory, Springer-Verlag, Berlin, 2011.Web of ScienceGoogle Scholar

  • [2]

    T. Kaczorek, Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci. 18(2) (2008), 223–228.Web of ScienceGoogle Scholar

  • [3]

    K.B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, 1974.Google Scholar

  • [4]

    P. Ostalczyk, Discrete fractional calculus: Selected applications in control and image processing, Ser. Comput. Vis. 4 (2016).Google Scholar

  • [5]

    P. Ostalczyk, Epitome of the fractional calculus: Theory and its applications in automatics, Technical University of Łódź Press, Łódź, 2008 (in Polish).Google Scholar

  • [6]

    I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.Google Scholar

  • [7]

    M. Busłowicz, Stability of linear continuous-time fractional order systems with delays of the retarded type, Bull. Pol. Acad. Sci. Tech. 56(4) (2008), 319–324.Google Scholar

  • [8]

    M. Busłowicz, Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bull. Pol. Acad. Sci. Tech. 60(2) (2012), 279–284.Web of ScienceGoogle Scholar

  • [9]

    M. Busłowicz and T. Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci. 19(2) (2009), 263–169.Web of ScienceCrossrefGoogle Scholar

  • [10]

    T. Kaczorek, Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bull. Pol. Acad. Sci. Tech. 64(3) (2016), 491–494.Google Scholar

  • [11]

    T. Kaczorek, Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems, Computational Probl. Electrical Eng. 5(1) (2015).Google Scholar

  • [12]

    T. Kaczorek: Positivity and stability of discrete-time nonlinear systems, IEEE 2nd International Conference on Cybernetics, 2015, 156–159.Google Scholar

  • [13]

    H. Zhang, D. Xie, H. Zhang and G. Wang, Stability analysis for discrete-time switched systems with unstable subsystems by a mode-dependent average dwell time approach, ISA Trans. 53 (2014), 1081–1086.Web of ScienceCrossrefGoogle Scholar

  • [14]

    J. Zhang, Z. Han, H. Wu and J. Hung, Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching, Circuits Syst, Signal Process. 33 (2014), 71–95.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    W. Xiang-Jun, W. Zheng-Mao and L. Jun-Guo, Stability analysis of a class of nonlinear fractional-order systems, IEEE Trans. Circuits and Systems-II, Express Briefs 55(11) (2008), 1178–1182.Web of ScienceCrossrefGoogle Scholar

  • [16]

    A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, 1994.Google Scholar

  • [17]

    L. Farina and S. Rinaldi, Positive linear systems; theory and applications, J. Wiley, New York, 2000.Google Scholar

  • [18]

    T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.Google Scholar

  • [19]

    T. Kaczorek, Positive linear systems with different fractional orders, Bull. Pol. Acad. Sci. Techn. 58(3) (2010), 453–458.Google Scholar

  • [20]

    T. Kaczorek, Positive linear systems consisting of n subsystems with different fractional orders, IEEE Trans. Circuits Syst. 58(7) (2011), 1203–1210.Web of ScienceCrossrefGoogle Scholar

  • [21]

    Ł. Sajewski, Descriptor fractional discrete-time linear system with two different fractional orders and its solution, Bull. Pol. Acad. Sci. Tech. 64(1) (2016), 15–20.Web of ScienceGoogle Scholar

  • [22]

    T. Kaczorek, Descriptor positive discrete-time and continuous-time nonlinear systems, Proc. Of SPIE 9290 (2014), DOI:.CrossrefGoogle Scholar

  • [23]

    T. Kaczorek, Singular fractional discrete-time linear systems, Control Cybern 40(3) (2011), 753–761.Google Scholar

  • [24]

    T. Kaczorek, Positive fractional continuous-time linear systems with singular pencils, Bull. Pol. Acad. Sci. Techn. 60(1) (2012), 9–12.Google Scholar

  • [25]

    T. Kaczorek, Positive singular discrete-time linear systems, Bull. Pol. Acad. Sci. Tech. 45(4) (1997), 619–631.Google Scholar

  • [26]

    T. Kaczorek, Minimum energy control of fractional descriptor positive discrete-time linear systems, Int. J. Appl. Math. Comput. Sci. 24(4) (2014), 735–743.Web of ScienceGoogle Scholar

  • [27]

    Ł. Sajewski, Descriptor fractional discrete-time linear system and its solution – Comparison of three different methods, Challenges Automation, Robotics Meas. Techniques, Adv. Intell. Syst. Comput. 440 (2016), 37–50.CrossrefGoogle Scholar

  • [28]

    T. Kaczorek, Stability of fractional positive nonlinear systems, Arch. Control Sci. 25(4) (2015), 491–496, DOI:.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    T. Kaczorek, Application of Drazin inverse to analysis of descriptor fractional discrete-time linear systems with regular pencils, Int. J. Appl. Math. Comput. Sci. 23(1) (2013), 29–34.Web of ScienceGoogle Scholar

  • [30]

    L. Chen, Y. He, Y. Chai and R. Wu, New results on stability and stabilization of a class of nonlinear fractional-order systems, Nonlinear Dyn. 75(4) (2014), 633–641.Web of ScienceCrossrefGoogle Scholar

  • [31]

    L. Chen, W. Pan, R. Wu and Y. He, New result on finite-time stability of fractional-order nonlinear delayed systems, J. Comput. Nonlinear Dynam. 10(6) (2015).Google Scholar

  • [32]

    S. Liang, R. Wu and L. Chen, BIBO stability of fractional-order controlled nonlinear systems, Int J Syst Sci 48(7) (2017), 1507–1514.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-02-21

Accepted: 2018-01-16

Published Online: 2018-02-02

Published in Print: 2018-06-26


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 3-4, Pages 299–307, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0049.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in