Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 3-4

Issues

Numerical Simulation for Shale Gas Flow in Complex Fracture System of Fractured Horizontal Well

Yingzhong Yuan
  • Corresponding author
  • Chongqing Key Laboratory of Complex Oil & Gas Fields Exploration and Development, Chongqing University of Science & Technology, Chongqing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wende Yan
  • Chongqing Key Laboratory of Complex Oil & Gas Fields Exploration and Development, Chongqing University of Science & Technology, Chongqing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fengbo Chen
  • Chongqing Key Laboratory of Complex Oil & Gas Fields Exploration and Development, Chongqing University of Science & Technology, Chongqing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiqiang Li
  • Chongqing Key Laboratory of Complex Oil & Gas Fields Exploration and Development, Chongqing University of Science & Technology, Chongqing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qianhua Xiao
  • Chongqing Key Laboratory of Complex Oil & Gas Fields Exploration and Development, Chongqing University of Science & Technology, Chongqing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaoliang Huang
  • Chongqing Key Laboratory of Complex Oil & Gas Fields Exploration and Development, Chongqing University of Science & Technology, Chongqing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-18 | DOI: https://doi.org/10.1515/ijnsns-2017-0135

Abstract

Complex fracture systems including natural fractures and hydraulic fractures exist in shale gas reservoir with fractured horizontal well development. The flow of shale gas is a multi-scale flow process from microscopic nanometer pores to macroscopic large fractures. Due to the complexity of seepage mechanism and fracture parameters, it is difficult to realize fine numerical simulation for fractured horizontal wells in shale gas reservoirs. Mechanisms of adsorption–desorption on the surface of shale pores, slippage and Knudsen diffusion in the nanometer pores, Darcy and non-Darcy seepage in the matrix block and fractures are considered comprehensively in this paper. Through fine description of the complex fracture systems after horizontal well fracturing in shale gas reservoir, the problems of conventional corner point grids which are inflexible, directional, difficult to geometrically discretize arbitrarily oriented fractures are overcome. Discrete fracture network model based on unstructured perpendicular bisection grids is built in the numerical simulation. The results indicate that the discrete fracture network model can accurately describe fracture parameters including length, azimuth and density, and that the influences of fracture parameters on development effect of fractured horizontal well can be finely simulated. Cumulative production rate of shale gas is positively related to fracture half-length, fracture segments and fracture conductivity. When total fracture length is constant, fracturing effect is better if single fracture half-length or penetration ratio is relatively large and fracturing segments are moderate. Research results provide theoretical support for optimal design of fractured horizontal well in shale gas reservoir.

Keywords: nonlinear flow of shale gas; fractured horizontal well; discrete fracture network model; PEBI grid; numerical simulation

PACS: 47.56.+r

References

  • [1]

    M.E. Curtis, R.J. Ambrose and C.H. Sondergeld, Structural characterization of gas shales on the micro and nano-scales. SPE 137693, (2010).Google Scholar

  • [2]

    F. Medeiros, E. Ozkan and H. Kazemi, Productivity and drainage area of fractured horizontal wells in tight gas reservoirs, SPE Reservoir Eval. Eng., 11 (2008), 902–911.Web of ScienceCrossrefGoogle Scholar

  • [3]

    M. Nobakht, L. Mattar, S. Moghadam and D.M. Anderson, Simplified forecasting of tight/shale-gas production in linear flow, J. Can. Petroleum Technol., 51 (2012), 476–486.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    C. Liu, H. Liu, Y.P. Zhang, D.W. Deng and H.A. Wu, Optimal spacing of staged fracturing in horizontal shale-gas well, J. Petroleum Sci. Eng., 132 (2015), 86–93.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    F. Javadpour, Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone), J. Can. Petroleum Technol., 48 (2009), 16–21.Web of ScienceCrossrefGoogle Scholar

  • [6]

    I.Y. Akkutlu and E. Fathi, Multi-scale gas transport in shales with local kerogen heterogeneities, Spe J., 17 (2012), 1002–1011.CrossrefGoogle Scholar

  • [7]

    R.W. Zimmerman, G. Chen, T. Hadgu and G.S. Bodvarsson, A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow, Water Resour. Res., 29 (1993), 2127–2137.CrossrefGoogle Scholar

  • [8]

    F.B. Zeng, G. Zhao and H. Liu, A new model for reservoirs with a discrete-fracture system, J. Can. Petroleum Technol., 51 (2012), 127–136.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    M. Zhang, J. Yao, H. Sun, J.L. Zhao, D.Y. Fan, Z.Q. Huang, et al, Triple-continuum modeling of shale gas reservoirs considering the effect of kerogen, J. Nat. Gas Sci. Eng. 24 (2015), 252–263.Web of ScienceCrossrefGoogle Scholar

  • [10]

    M. Karimi-Fard and L. Durlofsky, Accurate resolution of near-well effects in upscaled models using flow-based unstructured local grid refinement, Spe J., 17 (2012), 1084–1095.Web of ScienceCrossrefGoogle Scholar

  • [11]

    A. Moinfar, A. Varavei, K. Sepehrnoori and R.T. Johns, Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs, Spe J., 19 (2013), 289–303.Web of ScienceGoogle Scholar

  • [12]

    J. Sun, K. Hu, J. Wong, B. Hall and D. Schechter, Investigating the effect of improved fracture conductivity on production performance of hydraulic fractured wells through field case studies and numerical simulations, SPE 169866, (2014).Google Scholar

  • [13]

    M.W. Mcclure, M. Babazadeh, S. Shiozawa and J. Huang, Fully coupled hydromechanical simulation of hydraulic fracturing in three-dimensional discrete fracture networks, SPE 173354, (2015).Google Scholar

  • [14]

    M. Karimi-Fard, L.J. Durlofsky and K. Aziz, An efficient discrete-fracture model applicable for general-purpose reservoir simulators, Spe J., 9 (2004), 227–236.CrossrefGoogle Scholar

  • [15]

    L. Mi, H. Jiang and J. Li, The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas, J. Nat. Gas Sci. Eng., 20 (2014), 74–81.Web of ScienceCrossrefGoogle Scholar

  • [16]

    A. Wasaki and I.Y. Akkutlu, Permeability of organic-rich shale, Spe J. 5 (2015).Web of ScienceGoogle Scholar

  • [17]

    B. Yan, Y. Wang and J.E. Killough, Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs, Computational Geosciences, 20 (2016), 69–91.Web of ScienceCrossrefGoogle Scholar

  • [18]

    M. Josh, L. Esteban, C.D. Piane, J. Sarout, D.N. Dewhurst and M.B. Clennell, Laboratory characterisation of shale properties, J. Petroleum Sci. Eng., 88-89 (2012), 107–124.CrossrefGoogle Scholar

  • [19]

    U. Kuila and M. Prasad, Surface area and pore-size distribution in clays and shales, Geophysical Prospecting, 61 (2013), 341–362.Web of ScienceCrossrefGoogle Scholar

  • [20]

    B. Lin, M. Chen, Y. Jin and H. Pang, Modeling pore size distribution of southern Sichuan shale gas reservoirs, J. Nat. Gas Sci. Eng., 26 (2015), 883–894.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    F. Civan, Effective correlation of apparent gas permeability in tight porous media, Transp. Porous Media, 82 (2010), 375–384.Web of ScienceCrossrefGoogle Scholar

  • [22]

    J. Wang, H. Luo, H. Liu, Y. Ji and F. Cao, Variations of gas flow regimes and petro-physical properties during gas production considering volume consumed by adsorbed gas and stress dependence effect in shale gas reservoirs, SPE 174996, (2015).Google Scholar

  • [23]

    W.G. Li, B. Zhong, H.Z. Yang, X.F. Yang, Z.M. Hu and M. Chen, A new method for gas diffusivity evaluation in matrix rocks of shale reservoir, Acta Petrolei Sinica, 37 (2016), 88–96.Google Scholar

  • [24]

    M.R. Wang and Z.X. Li, Simulation for gas flows in microgeometries using the direct simulation Monte Carlo method, Int. J. Heat Fluid Flow, 25 (2004), 975–985.CrossrefGoogle Scholar

  • [25]

    W.S. Zha, D.L. Li, L. Wang, L.J. Zhang, Y.S. Zeng and D.T. Lu, Shale permeability correction models under dierent slip boundary conditions, Chin. J. Theor. Appl. Mechanics, 47 (2015), 923–931.Google Scholar

  • [26]

    J. Shi, L. Zhang, Y. Li, W. Yu, X. He and N. Liu, Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting, SPE 167226, (2013).Google Scholar

  • [27]

    F. Florence, J. Rushing, K. Newsham and T. Blasingame, Improved permeability prediction relations for low permeability sands, Rocky Mountain Oil & Gas Technology Symposium, (2007).Google Scholar

  • [28]

    H.T. Wang, Performance of multiple fractured horizontal wells in shale gas reservoirs with consideration of multiple mechanisms, Journal of Hydrology, 510 (2014), 299–312.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Y.L. Zhao, L.H. Zhang, J.X. Zhang, et al, Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir, Journal of Hydrology, 512 (2014), 447–456.Web of ScienceCrossrefGoogle Scholar

  • [30]

    Y.L. Zhao, L.H. Zhang, G.Q. Feng, et al, Performance analysis of fractured wells with stimulated reservoir volume in coal seam reservoirs, Oil & Gas Science and Technology, 71 (2016): 1–8.Web of ScienceGoogle Scholar

  • [31]

    Y.L. Zhao, H. Li, L.H. Zhang, et al, Pressure transient analysis for off-centered fractured vertical wells in arbitrarily shaped gas reservoirs with the BEM, Journal of Petroleum Science and Engineering, 156 (2017), 167–180.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    B. Zhumagulov, A. Issakhov and A. Khikmetov, Numerical simulation of unstable stratified turbulent flow in open channels, Int. J. Nonlinear Sci. Numer. Simulation, 16 (2015), 221–227.Web of ScienceGoogle Scholar

  • [33]

    A.J. Harfash, Nonhomogeneous porosity and thermal diffusivity effects on a double-diffusive convection in anisotropic porous media, Int. J. Nonlinear Sci. Numer. Simulation, 17 (2016), 205–220.Web of ScienceGoogle Scholar

  • [34]

    S.P.A. Devi and S.S.U. Devi, Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction, Int. J. Nonlinear Sci. Numer. Simulation, 17 (2016), 249–257.Web of ScienceGoogle Scholar

  • [35]

    R.H. Zhang, L.H. Zhang, R.H. Wang, et al, Research on transient flow theory of a multiple fractured horizontal well in a composite shale gas reservoir based on the finite-element method, Journal of Natural Gas Science and Engineering, 33 (2016), 587–598.CrossrefWeb of ScienceGoogle Scholar

  • [36]

    R.H. Zhang, L.H. Zhang, R.H. Wang, et al, Simulation of a multistage fractured horizontal well with finite conductivity in composite shale gas reservoir through finite-element method, Energy & Fuels, 30 (2016), 9036–9049.CrossrefWeb of ScienceGoogle Scholar

  • [37]

    E. Ozkan, R.S. Raghavan and O.G. Apaydin, Modeling of fluid transfer from shale matrix to fracture network, SPE 134830,(2010).Google Scholar

  • [38]

    Z.E. Heinemann and C.W. Brand, Gridding techniques in reservoir simulation. Proceedings of first and second international forum on reservoir simulation, September 12-16, 1988 and September 4–8 1989.Google Scholar

About the article

Received: 2017-06-27

Accepted: 2018-01-21

Published Online: 2018-04-18

Published in Print: 2018-06-26


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 3-4, Pages 367–377, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0135.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in