Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 3-4

Issues

Lie Symmetry Analysis of Boundary Layer Stagnation-Point Flow and Heat Transfer of Non-Newtonian Power-Law Fluids Over a Nonlinearly Shrinking/Stretching Sheet with Thermal Radiation

G.C. Layek / Bidyut Mandal / Krishnendu Bhattacharyya
  • Corresponding author
  • Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Astick Banerjee
Published Online: 2018-05-19 | DOI: https://doi.org/10.1515/ijnsns-2017-0211

Abstract

A symmetry analysis of steady two-dimensional boundary layer stagnation-point flow and heat transfer of viscous incompressible non-Newtonian power-law fluids over a nonlinearly shrinking/stretching sheet with thermal radiation effect is presented. Lie group of continuous symmetry transformations is employed to the boundary layer flow and heat transfer equations, that gives scaling laws and self-similar equations for a special type of shrinking/stretching velocity (cx1/3) and free-stream straining velocity (ax1/3) along the axial direction to the sheet. The self-similar equations are solved numerically using very efficient shooting method. For the above nonlinear velocities, the unique self-similar solution is obtained for straining velocity being always less than the shrinking/stretching velocity for Newtonian and non-Newtonian power-law fluids. The thickness of velocity boundary layer becomes thinner with power-law index for shrinking as well as stretching sheet cases. Also, the thermal boundary layer thickness decreases with increasing values the Prandtl number and the radiation parameter.

Keywords: Lie group of symmetry transformations; boundary layer stagnation-point flow; heat transfer; non-Newtonian power-law fluids; nonlinearly shrinking/stretching sheet; thermal radiation

References

  • [1]

    B.C. Sakiadis, Boundary layer behavior on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow, AIChE J. 7 (1961), 26–28.CrossrefGoogle Scholar

  • [2]

    L.J. Crane, Flow past a stretching plate, Zamp. 21 (1970), 645–647.CrossrefGoogle Scholar

  • [3]

    C.Y. Wang, The three dimensional flow due to a stretching flat surface, Phys. Fluids. 27 (1984), 1915–1917.CrossrefGoogle Scholar

  • [4]

    C.D. Surma Devi, H.S. Takhar and G. Nath, Unsteady, three-dimensional, boundary-layer flow due to a stretching surface, Int. J. Heat Mass. Transfer. 29 (12) (1986), 1996–1999.CrossrefGoogle Scholar

  • [5]

    K.R. Rajagopal, T.Y. Na and A.S. Gupta, Flow of viscoelastic fluid over a stretching sheet, Rheol Acta. 23 (1984), 213–215.CrossrefGoogle Scholar

  • [6]

    W.C. Troy, E.A. Overman, H.G.B. Ermentrout and J.P. Keerner, Uniqueness of the flow of a second order fluid past a stretching sheet, Quart. Appl. Math. 44 (1987), 753–755.CrossrefGoogle Scholar

  • [7]

    B.S. Dandapat and A.S. Gupta, Flow and heat transfer in a viscoelastic fluid over a stretching sheet, Int. J. Non-Linear Mech. 24 (3) (1989), 215–219.CrossrefGoogle Scholar

  • [8]

    K.R. Rajagopal, T.Y. Na and A.S. Gupta, A non-similar boundary layer on a stretching sheet in a non-Newtonian fluid with uniform free stream, J. Math. Phys. Sci. 21 (1987), 189–200.Google Scholar

  • [9]

    R. Cortell, Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl. Math. Comput. 184 (2007), 864–873.Web of ScienceGoogle Scholar

  • [10]

    H.I. Andersson and T.H. Toften, Numerical solution of a laminar boundary layer equations for power-law-fluid, J. non-Newtonian Fluid Mech. 32 (1989), 175–195.CrossrefGoogle Scholar

  • [11]

    A.K. Sahu, M.N. Mathur, P. Chaturani and S.S. Bharatiya, Momentum and heat transfer from a continuous moving surface to a power law fluid, Acta Mech. 142 (2000), 119–131.CrossrefGoogle Scholar

  • [12]

    L.C. Zhang and X.X. Zhang, Skin friction and heat transfer in a power law fluid in a laminar boundary layer along a moving surface, Int. J. Heat Mass. Transfer. 45 (2002), 2667–2672.CrossrefGoogle Scholar

  • [13]

    J. Nagler, Generalized similarity transformation model for Power-law laminar boundary layer fluids with non-linear dynamic viscosity, WSEAS Trans. Fluid Mech. 9 (2014), 168–177.Google Scholar

  • [14]

    B.S. Reddy, N. Kishan and M.N. Rajasekhar, MHD boundary layer flow of a non-Newtonian power-law fluid on a moving at plate, Adv. Appl. Sci. Res. 3 (2012), 1472–1481.Google Scholar

  • [15]

    H.I. Andersson, K.H. Bech and B.S. Dandapat, Magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Int. J. Non-Linear Mech. 27 (6) (1992), 929–936.CrossrefGoogle Scholar

  • [16]

    R. Cortell, A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Appl. Math. Comput. 168 (2005), 557–566.Google Scholar

  • [17]

    K.V. Prasad, S.R. Santhi and P.S. Datti, Non-Newtonian power-law fluid flow and heat transfer over a non-linearly stretching surface, Appl. Math. 3 (2012), 425–435.CrossrefGoogle Scholar

  • [18]

    M. Miklavčič and C.Y. Wang, Viscous flow due a shrinking sheet, Q. Appl. Math. 64 (2006), 283–290.CrossrefGoogle Scholar

  • [19]

    C.Y. Wang, Stagnation flow towards a shrinking sheet, Int. J. Nonlinear Mech. 43 (2008), 377–382.CrossrefGoogle Scholar

  • [20]

    A. Ishak, Y.Y. Lok and I. Pop, Stagnation-point flow over a shrinking sheet in a micropolar fluid, Chem. Eng. Commun. 197 (2010), 1417–1427.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    K. Bhattacharyya and G.C. Layek, Effects of suction/blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation, Int. J. Heat Mass. Transfer. 54 (2011), 302–307.Web of ScienceCrossrefGoogle Scholar

  • [22]

    K. Bhattacharyya, S. Mukhopadhyay and G.C. Layek, Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet, Int. J. Heat Mass. Transfer. 54 (2011), 308–313.Web of ScienceCrossrefGoogle Scholar

  • [23]

    Y.Y. Lok, A. Ishak and I. Pop, MHD stagnation-point flow towards a shrinking sheet, Int. J. Numer. Meth. Heat Fluid Flow. 21 (2011), 61–72.CrossrefGoogle Scholar

  • [24]

    N.A. Yacob and A. Ishak, Flow and heat transfer of a power-law fluid over a permeable shrinking sheet, Sains Malaysiana. 43 (3) (2014), 491–496.Google Scholar

  • [25]

    T.R. Mahapatra, S.K. Nandy, K. Vajravelu and R.A. Van Gorder, Dual solutions for the magnetohydrodynamic stagnation-point flow of a power-law fluid over a shrinking sheet, ASME J. Appl. Mech. 79 (2012), 024503.Web of ScienceCrossrefGoogle Scholar

  • [26]

    N. Bachok and A. Ishak, Similarity solutions for the stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet, Sains Malaysiana. 40 (11) (2011), 1297–1300.Google Scholar

  • [27]

    G.C. Layek, An introduction to dynamical system and chaos, India: Springer, 2015.Google Scholar

  • [28]

    B.J. Cantwell, Introduction to symmetry analysis, Cambridge, New York: Cambridge University Press, 2002.Google Scholar

  • [29]

    G.W. Bluman and S. Kumei, Symmetries and differential equations, Springer, New York, 1989.Google Scholar

  • [30]

    M. Oberlack, A unified approach for symmetries in plane parallel turbulent shear flows, J. Fluid Mech. 427 (2001), 299–328.CrossrefGoogle Scholar

  • [31]

    Z.-S. She, X. Chen and F. Hussain, Lie-group derivation of a multi-layer mixing length formula for turbulent channel and pipe flows, arXiv, 1112.6312v3 [physics.flu-dyn].Google Scholar

  • [32]

    Z.-S. She, X. Chen and F. Hussain, Quantifying wall turbulence via a symmetry approach: A Lie group theory, J. Fluid Mech. 827 (2017), 322–356.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    X. Chen and F. Hussain, Similarity transformation for equilibrium boundary layers, including effects of blowing and suction, Phys. Rev. Fluids. 2 (2017), art. id 034605.Web of ScienceGoogle Scholar

  • [34]

    M. Jalil and S. Asghar, Flow and heat transfer of Powell-Eyring fluid over a stretching surface: A Lie group analysis, J. Fluids Eng. 135 (2013), art. id 121201.Web of ScienceGoogle Scholar

  • [35]

    H.S. Hassan, S.A. Mahrous, A. Sharara and A. Hassan, A study for MHD boundary layer flow of variable viscosity over a heated stretching sheet via Lie-group method, Appl. Math. Inf. Sci. 9 (2015), 1327–1338.Google Scholar

  • [36]

    M.Q. Brewster, Thermal radiative transfer properties, Chichester: John Wiley and Sons, 1972.Google Scholar

  • [37]

    K. Bhattacharyya and G.C. Layek, Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet, Phys. Res. Int. 2014 (2014), art id 592536.Google Scholar

About the article

Received: 2017-09-27

Accepted: 2018-01-20

Published Online: 2018-05-19

Published in Print: 2018-06-26


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 3-4, Pages 415–426, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0211.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in