Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 5

Issues

Asymptotic Behavior of a Stochastic Two-Species Competition System with Impulsive Effects

Pan Wang
  • Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bing Li
  • School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yongkun Li
  • Corresponding author
  • Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-08 | DOI: https://doi.org/10.1515/ijnsns-2015-0141

Abstract

In this paper, we consider a stochastic two-species competition system with impulsive effects. Some dynamical properties are investigated and sufficient conditions for the stochastic boundedness, stochastic permanence and global attractivity are established. Under some conditions, we conclude that the stochastic model is persistent in mean and extinction. An example is given to illustrate the main result.

Keywords: competition system; stochastic permanence; global attractivity,persistent in mean; extinction; impulsive effects

MSC 2010: 60H10; 93E15; 92D25

References

  • [1]

    S. Ahmad, On the nonautonomous Volterra–Lotka competition equations, Proc. Amer. Math. Soc. 117 (1993), 199–204.

  • [2]

    S. Ahmad, A. C. Lazer, Average conditions for global asymptotic stability in anonautonomous Lotka–Volterra system, Nonlinear Anal. 40 (2000), 37–49.

  • [3]

    M. L. Zeeman, Extinction in competitive Lotka–Volterra systems, Proc. Amer. Math. Soc. 123 (1995), 87–96.

  • [4]

    F. Montes De Oca, M. L. Zeeman, Extinction in nonautonomous competitive Lotka–Volterra systems, Proc. Amer. Math. Soc. 124 (12) (1996), 3677–3687.

  • [5]

    F. Montes De Oca, L. Pérez, Extinction in nonautonomous competitive Lotka–Volterra systems with infinite delay, Nonlinear Anal. 75 (2012), 758–768.

  • [6]

    A. Tineo, An iterative scheme for the N-competing species problem, J. Differ. Equ. 116 (1995), 1–15.

  • [7]

    Z. Teng, On the nonautonomous Lotka–Volterra N-species competing systems, Appl. Math. Comput. 114 (2000), 175–185.

  • [8]

    Z. Li, M. A. Han, F. D. Chen, Influence of feedback controls on an autonomous Lotka–Volterra competitive system with infinite delays, Nonlinear Anal. Real World Appl. 14 (2013), 402–413.

  • [9]

    C. L. Shi, Z. Li, F. D. Chen, Extinction in a nonautonomous Lotka–Volterra competitive system with infinite delay and feedback controls, Nonlinear Anal. Real World Appl. 13 (2012), 2214–2226.

  • [10]

    Z. Y. Hou, Asymptotic behavior and bifurcation in competitive Lotka–Volterra systems, Appl. Math. Lett. 25 (2012), 195–199.

  • [11]

    Y. K. Li, Periodic solutions for delay Lotka–Volterra competition systems, J. Math. Anal. Appl. 246 (2000), 230–244.

  • [12]

    G. P. Samanta, A two-species competitive system under the influence of toxic substances, Appl. Math. Comput. 216 (2010), 291–299.

  • [13]

    Z. J. Liu, R. H. Tan, Y. P. Chen, Modeling and analysis of a delayed competitive system with impulsive perturbations, Rocky Mountain J. Math. 38 (2008), 1505–1523.

  • [14]

    Z. J. Liu, M. Fan, L. S. Chen, Globally asymptotic stability in two periodic delayed competitive systems, Appl. Math. Comput. 197 (2008), 271–287.

  • [15]

    Q. L. Wang, Z. J. Liu, Uniformly asymptotic stability of positive almost periodic solutions for a discrete competitive system, J. Appl. Math. 2013 (2013), Art. ID 182158, 9pages.

  • [16]

    V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989.Google Scholar

  • [17]

    A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995.Google Scholar

  • [18]

    Z. Jin, M. Han, G. Li, The persistence in a Lotka–Volterra competition systems with impulsive, Chaos, Solitons Fractals 24 (2005), 1105–1117.

  • [19]

    J. Hou, Z. Teng, S. Gao, Permanence and global stability for nonautonomous N-species Lotka–Volterra competitive system with impulses, Nonlinear Anal. Real World Appl. 11 (2010), 1882–1896.

  • [20]

    H. Hu, K. Wang, D. Wu, Permanence and global stability for nonautonomous N-species Lotka–Volterra competitive system with impulses and infinite delays, J. Math. Anal. Appl. 377 (1) (2011), 145–160.

  • [21]

    S. Ahmad, I. M. Stamova, Asymptotic stability of competitive systems with delays and impulsive perturbations, J. Math. Anal. Appl. 334 (2007), 686–700.Google Scholar

  • [22]

    J. Yan, A. Zhao, J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka–Volterra systems, Math. Comput. Modelling 40 (5–6) (2004), 509–518.

  • [23]

    X. Liu, L. Chen, Global dynamics of the periodic logistic system with periodic impulsive perturbations, J. Math. Anal. Appl. 289 (2004), 279–291.

  • [24]

    Z. J. Liu, Q. L. Wang, An almost periodic competitive system subject to impulsive perturbations, Appl. Math. Comput. 231 (2014), 377–385.

  • [25]

    M. Liu, K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl. 63 (2012), 871–886.

  • [26]

    X. R. Mao, Stochastic versions of the Lassalle theorem, J. Differ. Equ. 153 (1999), 175–195.

  • [27]

    I. Karatzas, S. Shreve, Brownian motion and stochastic calculus, Springer, Berlin, 1991.Google Scholar

  • [28]

    A. Friedman, Stochastic differential equations and applications, Academic Press, New York, 1976.Google Scholar

  • [29]

    X. R. Mao, Stochastic differential equations and applications, Horwood, Chichester, 1997.Google Scholar

  • [30]

    I. Barbalat, Systems d’equations differentielle d’oscillations nonlineaires, Rev. Roumaine Math. Pures Appl. 4 (1959), 267–270.

  • [31]

    H. Qiu, J. L. Lv, K. Wang, Two types of permanence of a stochastic mutualism model, Adv. Differ. Equ. 2013 (2013), 1–17.

  • [32]

    D. Jiang, N. Shi, X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl. 340 (2008), 588–597.

  • [33]

    X. Li, X. Mao, Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation, Discrete Cont. Dyn. Syst. 24 (2009), 523–545.

  • [34]

    M. Liu, K. Wang, Y. Wang, Long term behaviors of stochastic single-species growth models in a polluted environment II, Appl. Math. Modelling 35 (2011), 4438–4448.

  • [35]

    M. Liu, K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl. 375 (2011), 42–57.

About the article

Received: 2015-09-27

Accepted: 2018-05-20

Published Online: 2018-06-08

Published in Print: 2018-07-26


This work is supported by the National Natural Sciences Foundation of People’s Republic of China under Grant 11361072.


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 5, Pages 427–438, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2015-0141.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in