Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year

IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

See all formats and pricing
More options …
Volume 19, Issue 5


Finite Element Analysis of Flexible Structure and Cavitating Nonlinear Acoustic Fluid Interaction under Shock Wave Loading

Farhoud Kalateh / Ali Koosheh
Published Online: 2018-05-31 | DOI: https://doi.org/10.1515/ijnsns-2016-0135


This paper describes a numerical model and its finite element implementation that used to compute the cavitation effects on nonlinear acoustic fluid and adjacent flexible structure interaction. The system is composed of two sub-systems, namely, the fluid and the flexible flat plate. A fully coupled approach using iterative implicit partitioned scheme was implemented in the present work which can account for the effects associated whit a mutual interaction. This approach included a compressible nonlinear acoustic fluid Eulerian solver and a Lagrangian solver for the flexible structure both in finite element formulation. A novel implementation of acoustic cavitation was made possible with the introduction of a simplified one-fluid cavitation model. The element-by-element PCG (Preconditioned Conjugate Gradient) solver together with diagonal preconditioning is used to solve the large equation system resulting from the finite element discretization of the governing equation of fluid domain. The capability of three different cavitation model, as the cut-off model, Modified Schmidt model and developed model are compared with each other in the evaluation of plate vibration response. Simulation results are presented on a large size shock tube, in which planar shock waves were impacting in “face on” configuration flat plates mounted at tube's end. Results are presented to demonstrate the capability of proposed solver in simulating cavitating nonlinear acoustic fluid. Obtained results show that impact forces caused impinging shock wave and reloading by cavitating region collapse have a considerable effect on the dynamic response of flexible plate.

Keywords: fluid–structure interaction; nonlinear acoustic; cavitation; finite element; shock loading

MSC 2010: 65Pxx


  • [1]

    G. Taylor, The pressure and impulse of submarine explosion waves on plates. The scientific papers of G.I. Taylor, Vol. III, Cambridge University Press, Cambridge, UK, 1963.Google Scholar

  • [2]

    M. F. Hamilton and D. T. Blackstock, Nonlinear acoustics, Academic Press, 1998.Google Scholar

  • [3]

    R. T. Beyer, Nonlinear acoustics, Department of the Navy, Sea Systems Command, 1974.Google Scholar

  • [4]

    K. Naugolnykh and L. Ostrovsky, Nonlinear wave processes in acoustics, Cambridge University Press, 1998.Google Scholar

  • [5]

    B. O. Enflo and C. M. Hedberg, Theory of nonlinear acoustics in fluids, Kluwer Academic Publishers, 2002.Google Scholar

  • [6]

    K. Castor, P. Gerstoft, P. Roux and W. Kuperman, Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide, JASA 116(4) (2004), 2004–2010.CrossrefGoogle Scholar

  • [7]

    M. J. Gagen, Novel acoustic sources from squeezed cavities in car tires, JASA 106(2) (1999), 794–801.CrossrefGoogle Scholar

  • [8]

    J. Hoffelner, H. Landes, M. Kaltenbacher and R. Lerch, Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation, IEEE Trans. Ultrason Ferroelectr. Freq. Control 48(3) (2001), 779–786.CrossrefGoogle Scholar

  • [9]

    X. Cai and A. Odegard, Parallel simulation of 3D nonlinear acoustic fields on a Linux cluster. In Cluster Computing, 2000. Proceedings. IEEE International Conference (2000), 185–192.Google Scholar

  • [10]

    Z. Aginsky and O. Gottlieb, Numerical analysis of nonlinear acoustic fluid–structure interaction of a two dimensional plate in an inviscid compressible fluid, ENOC 2011, Rome, Italy, 2011.Google Scholar

  • [11]

    M. Gong and Y. Andreopoulos, Coupled fluid–structure solver: the case of shock wave impact on monolithic and composite material plates, J. Compl. Phys. 228 (2009), 4400–4434.CrossrefGoogle Scholar

  • [12]

    R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), 425–467.CrossrefGoogle Scholar

  • [13]

    R. Saurel and R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21 (1999), 1115–1145.CrossrefGoogle Scholar

  • [14]

    Y. Ghen and S. D. Heister, A numerical treatment for attached cavitation, J. Fluid Eng. 116 (1994), 613–618.CrossrefGoogle Scholar

  • [15]

    D. P. Schmidt, J. R. Christopher and M. L. Corradini, A fully compressible, two-dimensional model of small, high speed, cavitating nozzles, At. Sprays 9 (1999), 255–276.CrossrefGoogle Scholar

  • [16]

    W. F. Xie, T. G. Liu and B. C. Khoo, Application of a one-fluid model for large scale homogenous unsteady cavitation: the modified Schmidt model, Comput. Fluids 35 (2006), 1177–1192.CrossrefGoogle Scholar

  • [17]

    T. G. Liu, B. C. Khoo and W. F. Xie, Isentropic one-fluid modeling of unsteady cavitating flow, J. Comput. Phys. 201 (2004), 80–108.CrossrefGoogle Scholar

  • [18]

    N. Kambouchev, L. Noels and R. Radovitzky, Nonlinear compressibility effects in fluid–structure interaction and their implications on the air-blast loading of structures, J. Appl. Phys. 100 (2006), 063519.CrossrefGoogle Scholar

  • [19]

    A. Ferndi, L. Maestrello and A. Bayliss, Coupling between plate vibration and acoustic radiation, J. Sound Vib. 177 (1994), 207–226.CrossrefGoogle Scholar

  • [20]

    A. Ferndi, L. Maestrello and L. Ting, An efficient model for coupling structural vibrations with acoustic radiation, J. Sound Vib. 182 (1995), 741–757.CrossrefGoogle Scholar

  • [21]

    Z. Xue and J. W. Hutchinson, Preliminary assessment of sandwich plates subjected to blast loads, Int. J. Mech. Sci. 45 (2003), 687–705.CrossrefGoogle Scholar

  • [22]

    Z. Xue and J. W. Hutchinson, A comparative study of impulse-resistant metal sandwich plates, Int. J. Impact Eng. 30 (2004), 1283–1305.CrossrefGoogle Scholar

  • [23]

    ANSYS Inc., Theory Reference, Release 10.0 Documentation for ANSYS software, ANSYS Inc., 2006.Google Scholar

  • [24]

    L. Bjorno, Introduction to nonlinear acoustic, Phys. Procedia 3 (2010), 5–16.CrossrefGoogle Scholar

  • [25]

    V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust. 16 (1971), 467–470.Google Scholar

  • [26]

    T. Walsh, Finite element nonlinear acoustics in fluids, J. Comput. Acoust. 15 (2007), 353–375.Web of ScienceCrossrefGoogle Scholar

  • [27]

    F. Kalateh and R. Attarnejad, Finite element simulation of acoustic cavitation in the reservoir and effects on dynamic response of concrete dams, Finite Elem. Anal. Des. 47 (2011), 543–558.Web of ScienceCrossrefGoogle Scholar

  • [28]

    F. Kalateh and R. Attarnejad, A new cavitation simulation method: dam-reservoir systems, Int. J. Com Methods Eng. Sci. Mech. 13 (2012), 161–183.CrossrefGoogle Scholar

  • [29]

    W. F. Xie, T. G. Liu and B. C. Khoo, The simulation of cavitation flows induced by underwater shock and free surface interaction, Appl. Numer. Math. 57 (2007), 734–745.CrossrefGoogle Scholar

  • [30]

    G. B. Wallis, One-dimensional two-phase flow, McGraw-Hill, New York, 1969.Google Scholar

  • [31]

    W. Dettmer and D. Peric, An analysis of the time integration algorithm for the finite element solutions of incompressible Navier–Stokes equations based on a stabilized formulation, Comput. Methods Appl. Mech. Eng. 192 (2003), 1177–1226.CrossrefGoogle Scholar

  • [32]

    C. Kassiotis, A. Ibrahimbegovic, R. Niekamp and H. G. Matthies, Nonlinear fluid–structure interaction problem. Part I: Implicit partitioned algorithm, nonlinear stability proof and validation examples, Comput. Mech. 47 (2011), 305–323.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    J. H. Prevost, Partitioned solution procedure for simulations integration of coupled-field problems, Commun. Numer. Methods Eng. 13 (1997), 239–247.CrossrefGoogle Scholar

  • [34]

    G. Fenves and L. M. Vargas-Loli, Nonlinear dynamic analysis of fluid–structure systems, J. Eng. Mech. 114 (1988), 219–240.CrossrefGoogle Scholar

  • [35]

    H. H. Bleich and I. S. Sandler, Interaction between structures and bilinear fluids, Int. J. Solids Struct. 6 (1970), 617–639.CrossrefGoogle Scholar

  • [36]

    M. A. Sprague and T. L. Geers, Spectral elements and field separation for an acoustic fluid subject to cavitation, J. Comput. Phys. 184 (2003), 149–162.CrossrefGoogle Scholar

  • [37]

    G. Sandberg, A new finite element formulation of shock-induced hull cavitation, Comput. Methods Appl. Mech. Eng. 120 (1995), 33–44.CrossrefGoogle Scholar

  • [38]

    M. R. Ross, M. A. Sprague, C. A. Felippa and K. C. Par, Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods, Comput. Methods Appl. Mech. Eng. 198 (2009), 986–1005.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-06-27

Accepted: 2018-01-21

Published Online: 2018-05-31

Published in Print: 2018-07-26

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 5, Pages 459–473, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2016-0135.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in