Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 5

Issues

Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Difference Systems

Tao Zhou / Xia Liu
  • Corresponding author
  • Oriental Science and Technology College, Hunan Agricultural University, Changsha 410128, China
  • Science College, Hunan Agricultural University, Changsha 410128, Changsha, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Haiping Shi
  • Modern Business and Management Department, Guangdong Construction Polytechnic, Guangzhou 510440, China
  • School of Mathematics and Statistics, Central South University, Changsha 410083, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-26 | DOI: https://doi.org/10.1515/ijnsns-2017-0138

Abstract

This paper is devoted to investigate a question of the existence of solutions to boundary value problems for a class of nonlinear difference systems. The proof is based on the notable mountain pass lemma in combination with variational technique. By using the critical point theory, some new existence criteria are obtained.

Keywords: boundary value problems; nonlinear difference systems; mountain pass lemma; critical point theory

MSC 2010: 39A10; 47J30; 58E05

References

  • [1]

    R. P. Agarwal, D. O’Regan, P. J. Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic, Dordrecht, 1999.Google Scholar

  • [2]

    C. D. Ahlbrandt, A. C. Peterson. Discrete hamiltonian systems: difference equations, continued fraction and Riccati equations, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar

  • [3]

    Z. AlSharawi, J. M. Cushing, S. Elaydi, Theory and applications of difference equations and discrete dynamical systems, Springer, New York, 2014.Google Scholar

  • [4]

    G. M. Bisci, D. Repovš, Existence of solutions for p-Laplacian discrete equations, Appl. Math. Comput. 242 (2014), 454–461.Google Scholar

  • [5]

    X. C. Cai, J. S. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2) (2006), 649–661.CrossrefGoogle Scholar

  • [6]

    P. Chen, X. F. He, X. H. Tang, Infinitely many solutions for a class of fractional Hamiltonian systems via critical point theory, Math. Methods Appl. Sci. 39 (5) (2016), 1005–1019.Web of ScienceCrossrefGoogle Scholar

  • [7]

    P. Chen, X. H. Tang, Existence of solutions for a class of second-order p-Laplacian systems with impulsive effects, Appl. Math. 59 (5) (2014), 543–570.Web of ScienceCrossrefGoogle Scholar

  • [8]

    P. Chen, Z. M. Wang, Infinitely many homoclinic solutions for a class of nonlinear difference equations, Electron. J. Qual. Theory Differ. Equ. 2012 (47) (2012), 1–18.Google Scholar

  • [9]

    X. Q. Deng, Nonexistence and existence results for a class of fourth-order difference mixed boundary value problems, J. Appl. Math. Comput. 45 (1) (2014), 1–14.CrossrefGoogle Scholar

  • [10]

    C. J. Guo, R. P. Agarwal, C. J. Wang, D. O’Regan, The existence of homoclinic orbits for a class of first order superquadratic Hamiltonian systems, Mem. Differential Equations Math. Phys. 61 (2014), 83–102.Google Scholar

  • [11]

    C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal. Existence of periodic solutions for a class of second-order superquadratic delay differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 21 (5) (2014) 405–419.Google Scholar

  • [12]

    C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal, Existence of homoclinic orbits of a class of second-order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 20 (2013), 675–690.Google Scholar

  • [13]

    M. Jia, Standing waves for the discrete nonlinear Schrödinger equations, Electron. J. Differ. Equ. 2016 (183) (2016), 1–9.Google Scholar

  • [14]

    J. H. Leng, Existence of periodic solutions for a higher order nonlinear difference equation, Electron. J. Differ. Equ. 2016 (134) (2016), 1–10.Google Scholar

  • [15]

    J. H. Leng, Periodic and subharmonic solutions for 2nth-order ϕc-Laplacian difference equations containing both advance and retardation, Indag. Math. (N.S.) 27 (4) (2016), 902–913.CrossrefWeb of Science

  • [16]

    X. Liu, Y. B. Zhang, H. P. Shi, Nonexistence and existence results for a class of fourth-order difference Neumann boundary value problems, Indag. Math. (N.S.) 26 (1) (2015), 293–305.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    X. Liu, Y. B. Zhang, H. P. Shi, Existence of periodic solutions for a class of nonlinear difference equations, Qual. Theory Dyn. Syst. 14 (1) (2015), 51–69.Web of ScienceCrossrefGoogle Scholar

  • [18]

    X. Liu, Y. B. Zhang, H. P. Shi, Nonexistence and existence results for a class of fourth-order difference Dirichlet boundary value problems, Math. Methods Appl. Sci. 38 (4) (2015), 691–700.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    J. Mawhin, M. Willem, Critical point theory and hamiltonian systems, Springer, New York, 1989.Google Scholar

  • [20]

    P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, RI, New York, 1986.Google Scholar

  • [21]

    S. Salahshour, A. Ahmadian, M. Senu, D. Baleanu, P. Agarwal, On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy 17 (2) (2015), 885–902.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    H. P. Shi, X. Liu, Y. B. Zhang, Periodic solutions for a class of nonlinear difference equations, Hokkaido Math. J. 45 (1) (2016), 109–126.CrossrefGoogle Scholar

  • [23]

    H. P. Shi, X. Liu, Y. B. Zhang, Homoclinic orbits for a class of nonlinear difference equations, Azerb. J. Math. 6 (1) (2016), 2218–6816.Google Scholar

  • [24]

    H. P. Shi, Y. B. Zhang, Standing wave solutions for the discrete nonlinear Schrödinger equations with indefinite sign subquadratic potentials, Appl. Math. Lett. 58 (2016), 95–102.CrossrefGoogle Scholar

  • [25]

    A. N. Sharkovsky, Y. L. Maistrenko, E. Y. Romanenko. Difference equations and their applications, Kluwer Academic Publishers, Dordrecht, 1993.Google Scholar

  • [26]

    T. Thandapani, K. Ravi, Bounded and monotone properties of solutions of second-order quasilinear forced difference equations, Comput. Math. Appl. 38 (2) (1999), 113–121.CrossrefGoogle Scholar

  • [27]

    X. M. Zhang, P. Agarwal, Z. H. Liu, H. Peng, The general solution for impulsive differential equations with Riemann-Liouville fractional-order q ∈ (1,2), Open Math. 13 (1) (2015), 908–923.Web of ScienceGoogle Scholar

  • [28]

    X. M. Zhang, P. Agarwal, Z. H. Liu, H. Peng, F. You, Y. J. Zhu, Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1 with finite delays, Adv. Difference Equ. 2017 (123) (2017), 1–18.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Z. Zhou, D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math. 58 (4) (2015), 781–790.CrossrefGoogle Scholar

  • [30]

    Z. Zhou, M. T. Su, Boundary value problems for 2n-order ϕc-Laplacian difference equations containing both advance and retardation, Appl. Math. Lett. 41 (2015), 7–11.Web of ScienceCrossrefGoogle Scholar

  • [31]

    H. Zhou, L. Yang, P. Agarwal, Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval, J. Appl. Math. Comput. 53 (1–2) (2017), 51–76.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    Z. Zhou, J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Sin. (Engl. Ser.) 29 (9) (2013), 1809–1822.CrossrefGoogle Scholar

  • [33]

    Z. Zhou, J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differ. Equ. 249 (5) (2010), 1199–1212.Web of ScienceCrossrefGoogle Scholar

  • [34]

    Z. Zhou, J. S. Yu, Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math. 54 (1) (2011), 83–93.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-06-29

Accepted: 2018-05-20

Published Online: 2018-06-26

Published in Print: 2018-07-26


This project is supported by the National Natural Science Foundation of China (No. 11501194). This work was carried out while visiting Central South University.


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 5, Pages 531–537, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0138.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in