Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year

IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

See all formats and pricing
More options …
Volume 19, Issue 5


Compressive Wave Propagation in Highly Ordered Granular Media Based on DEM

Jiao Wang / Xihua Chu
Published Online: 2018-06-07 | DOI: https://doi.org/10.1515/ijnsns-2017-0213


In this study, we investigated the propagation of the compressive waves in twp-dimensional highly ordered particle assemblies with different material properties and confining stresses. We focused on the attenuation of velocity amplitude, wave speed and energy dispersion behaviors. The mechanisms of wave propagation through specimens containing inclusions that show different horizontal angles were simulated. The peak velocities change exponentially as a function of time along the wave propagation direction. Energy dispersion exhibits an increasing trend as the angle increases. Then the effects of material parameter on wave propagation speed and the confining stress with the dispersion relations are determined. Finally, the shape of wavefront is studied to show the propagation of stress wave. It is linked to the distribution of equivalent strain. The outer contours of wavefront and strain distribution have the same shape.

Keywords: DEM; granular media; wave propagation; dispersion

PACS: 45.70.Vn


  • [1]

    H. Hinrichsen and D.E. Wolf. The physics of granular media, Weinheim: Wiley-VCH, 2004.Google Scholar

  • [2]

    P. Jop, Y. Forterre and O. Pouliquen. A constitutive law for dense granular flows, Nature 441(7094) (2006), 727–730.CrossrefGoogle Scholar

  • [3]

    C. Daraio, V.F. Nesterenko, E.B. Herbold and S. Jin. Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals, Phys. Rev. E. 73 (2006), 026610.CrossrefGoogle Scholar

  • [4]

    S. Sen, J. Hong, J. Bang, et al. Solitary waves in the granular chain, Phys. Rep. 462(2) (2008), 21–66.CrossrefGoogle Scholar

  • [5]

    A. AP, S. KJ, G. PH, et al. Propagation of solitary waves in 2D granular media: A numerical study, Mech. Mater. 54(1) (2012), 100–112.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    A. Shukla, S. MH, Y. Xu, et al. Influence of loading pulse duration on dynamic load transfer in a simulated granular medium, J. Mech. Phys. Solids. 41(11) (1993), 1795–1808.CrossrefGoogle Scholar

  • [7]

    A. Molinari and C. Daraio. Stationary shocks in periodic highly nonlinear granular chains, Phys. Rev. E 80(2) (2009), 056602.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    A.N. Lazaridi and V.F. Nesterenko. Observation of a new type of solitary waves in a one-dimensional granular medium, J. Appl. Mech. Tech. Phys 26(3) (1985), 405–408.CrossrefGoogle Scholar

  • [9]

    G.I. Chernyi. Propagation of planar compression waves in a granular elastoplastic medium, in: Blasts in Porous and Dispersive Media [in Russian], Kiev, Naukova Dumka, 1969.Google Scholar

  • [10]

    Y. Xu and A. Shukla. Stress wave velocity in granular medium, Mech. Res. Commun 17(6) (1990), 383–391.CrossrefGoogle Scholar

  • [11]

    Z. Ning and T.M. Evans Discrete element method study of shear wave propagation in granular soil, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, France, Paris, 2013; 1031–1034.Google Scholar

  • [12]

    J. Duffy and R.D. Mindlin. Stress-strain relations and vibrations of a granular medium, J. Appl. Mech (1956), 585–593.Google Scholar

  • [13]

    J. Hong and A. Xu. Nondestructive identification of impurities in granular medium, Appl. Phys. Lett 81(25) (2004), 4868–4870.Google Scholar

  • [14]

    C. Coste, E. Falcon and S. Fauve. Solitary waves in a chain of beads under Hertz contact, Phys. Rev. E 56(56) (1997), 6104–6117.CrossrefGoogle Scholar

  • [15]

    T. On, E. Wang and J. Lambros. Plastic waves in one-dimensional heterogeneous granular chains under impact loading: Single intruders and dimer chains, Int. J. Solids. Struct. 62 (2015), 81–90.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    R.K. Pal, A.P. Awasthi and P.H. Geubelle. Wave propagation in elasto-plastic granular systems, Gran. Matt 15(6) (2013), 747–758.CrossrefGoogle Scholar

  • [17]

    K.L. Johnson. Contact mechanics, J. Tribol 108(4) (1985), 464.Google Scholar

  • [18]

    E. Wang, M. Manjunath, A. AP, et al. High-amplitude elastic solitary wave propagation in 1-D granular chains with preconditioned beads: Experiments and theoretical analysis, J. Mech. Phys. Solid. 72 (2014), 161–173.CrossrefGoogle Scholar

  • [19]

    O. Mouraille, M. WA and S. Luding. Sound wave acceleration in granular materials, J. Stat. Mech. Theor. Exp 47(7) (2006), 1192–1197.Google Scholar

  • [20]

    S. Job, F. Melo, A. Sokolow, et al. Solitary wave trains in granular chains: Experiments, theory and simulations, Granul. Matter. 10(1) (2007), 13–20.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    M. Manciu, S. Sen and H. AJ. Impulse propagation in dissipative and disordered chains with power-law repulsive potentials, Physica D 157(3) (2001), 226–240.CrossrefGoogle Scholar

  • [22]

    M. Manjunath, A.P. Awasthi and P.H. Geubelle. Wave propagation in random granular chains, Phys. Rev. E 85(85) (2012), 031308.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    M.A. Porter, P.G. Kevrekidis and C. Daraio. Granular crystals: Nonlinear dynamics meets materials engineering, Phys. Today 68(11) (2015), 44–50.CrossrefGoogle Scholar

  • [24]

    V. Smilauer, et al. Yade Documentation 2nd, 2015.. http://yade-dem.orgCrossref

  • [25]

    N. Belheine, J.P. Plassiard, F.V. Donzé, et al. Numerical simulation of drained triaxial test using 3D discrete element modeling, Comput Geotech. 36(1-2) (2009), 320–331.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    R.D. Mindlin and H. Deresiewicz. Elastic Spheres in Contact Under Varying Oblique Forces, J. Appl. Mech 20(3) (1953), 327–344.Google Scholar

  • [27]

    R.D. Mindlin. Compliance of Elastic Bodies in Contact, J. Appl. Mech 16(3) (1949), 259–268.Google Scholar

  • [28]

    A. Leonard and C. Daraio. Stress wave anisotropy in centered square highly nonlinear granular systems, Phys. Rev. Lett. 108(21) (2012), 214301.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    X. Li, X. Chu and Y.T. Feng. A discrete particle model and numerical modeling of the failure modes of granular materials, Eng. Computation 22(8) (2005), 894–920.CrossrefGoogle Scholar

About the article

Received: 2017-09-28

Accepted: 2018-05-20

Published Online: 2018-06-07

Published in Print: 2018-07-26

This work was supported by the National Natural Science Foundation of China (Nos. 11772237 and 11472196).

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 5, Pages 545–552, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0213.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in