Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 6

Issues

Stability and Hopf Bifurcation in a Delayed SIS Epidemic Model with Double Epidemic Hypothesis

Jiangang Zhang / Yandong Chu / Wenju Du / Yingxiang Chang / Xinlei An
Published Online: 2018-07-20 | DOI: https://doi.org/10.1515/ijnsns-2016-0122

Abstract

The stability and Hopf bifurcation of a delayed SIS epidemic model with double epidemic hypothesis are investigated in this paper. We first study the stability of the unique positive equilibrium of the model in four cases, and we obtain the stability conditions through analyzing the distribution of characteristic roots of the corresponding linearized system. Moreover, we choosing the delay as bifurcation parameter and the existence of Hopf bifurcation is investigated in detail. We can derive explicit formulas for determining the direction of the Hopf bifurcation and the stability of bifurcation periodic solution by center manifold theorem and normal form theory. Finally, we perform the numerical simulations for justifying the theoretical results.

Keywords: delayed SIS epidemic model; double epidemic hypothesis; stability; Hopf bifurcation

PACS: 2010; 110.51

References

  • [1]

    H. Y. Kang and X. C. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks, Commun. Nonlinear Sci. Numer. Simulat 27 (2015), 30–39.CrossrefGoogle Scholar

  • [2]

    C. H. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate, Physica A 427 (2015), 234–243.Web of ScienceCrossrefGoogle Scholar

  • [3]

    A. Economoua, A. Gómez-Corral and M. López-García, A stochastic SIS epidemic model with heterogeneous contacts, Physica A 421 (2015), 78–97.Web of ScienceCrossrefGoogle Scholar

  • [4]

    J. C. Zhang and J. T. Sun, Stability analysis of an SIS epidemic model with feedback mechanism on networks, Physica A 394 (2014), 24–32.Web of ScienceCrossrefGoogle Scholar

  • [5]

    T. T. Zhou, W. P. Zhang and Q. Y. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Appl. Math Comput. 226 (2014), 288–305.Web of ScienceGoogle Scholar

  • [6]

    J. F. Luo, W. D. Wang, H. Y. Chen and R. Fu, Bifurcations of a mathematical model for HIV dynamics, J. Math. Anal. Appl. 434 (2016), 837–857.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    P. M. Hao, D. J. Fan, J. J. Wei and Q. H. Liu, Dynamic behaviors of a delayed HIV model with stage-structure, Commun. Nonlinear Sci. Numer. Simulat 17 (2012), 4753–4766.CrossrefGoogle Scholar

  • [8]

    J. Li, Y. L. Zhao and H. P. Zhu, Bifurcation of an SIS model with nonlinear contact rate, J. Math. Anal. Appl. 432 (2015), 1119–1138.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    Y. L. Cai, Y. Kang, M. Banerjee and W. M. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equ. 259 (2015), 7463–7502.Web of ScienceCrossrefGoogle Scholar

  • [10]

    Q. L. Chen, Z. D. Teng, L. Wang and H. J. Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, Nonlinear Dynam. 71(1–2) (2013), 55–73.Web of ScienceCrossrefGoogle Scholar

  • [11]

    X. Z. Meng, Z. Q. Li and X. L. Wang, Dynamics of a novel nonlinear SIR model with double hypothesis and impulsive effects, Nonlinear Dynam. 59 (2010), 503–513.Web of ScienceCrossrefGoogle Scholar

  • [12]

    S. J. Gao, L. S. Chen, J. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine 24(35–36) (2006), 6037–6045.CrossrefGoogle Scholar

  • [13]

    X. Z. Li, W. S. Li and M. Ghosh, Stability and bifurcation of an SIS epidemic model treatment, Chaos Solitons Fractals 42(5) (2009), 2822–2832.Web of ScienceCrossrefGoogle Scholar

  • [14]

    Y. N. Zhao and D. Q. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math Comput. 243 (2014), 718–727.Web of ScienceGoogle Scholar

  • [15]

    B. W. Liu, Convergence of an SIS epidemic model with a constant delay, Appl. Math. Lett. 49 (2015), 113–118.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    X. Z. Meng, S. N. Zhao, T. Feng and T. H. Zhao, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl. 433 (2016), 227–242.Web of ScienceCrossrefGoogle Scholar

  • [17]

    H. F. Huo and Z. P. Ma, Dynamics of a delayed epidemic model with non-monotonic rate, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 459–468.Web of ScienceCrossrefGoogle Scholar

  • [18]

    C. Celik, The stability and Hopf bifurcation for a predator-prey system with time delay, Chaos Solitons Fractals 37 (2008), 87–99.Web of ScienceCrossrefGoogle Scholar

  • [19]

    L. Y. Zhang, Hopf bifurcation analysis in a Monod–Haldane predator–Prey model with delays and diffusion, Appl. Math Model. 39 (2015), 1369–1382.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    C. Celik, Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos Solitons Fractals 42 (2009), 1474–1484.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    C. Celik, Stability and Hopf bifurcation in a delayed ratio dependent Holling-Tanner type model, Appl. Math Comput. 255 (2015), 228–237.Web of ScienceGoogle Scholar

  • [22]

    Y. M. Zhang, J. D. Cao and W. Y. Xu, Stability and Hopf bifurcation of a Goodwin model with four different delays, Neurocomputing 165 (2015), 144–151.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    J. K. Hale, Theory of Functional Differential Equation, Springer-verlag, New York, 1977.Google Scholar

  • [24]

    B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and applications of Hopf Bifurcation, Camb. Univ. Press, Cambridge, 1981.Google Scholar

About the article

Received: 2016-08-25

Accepted: 2018-01-09

Published Online: 2018-07-20

Published in Print: 2018-09-25


This work was supported by the National Natural Science Foundation; [11161027]; [61364001]; Science and Technology Program of Gansu Province; [144GKCA018].


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 6, Pages 561–571, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2016-0122.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in