Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

8 Issues per year


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 6

Issues

Use of Modified Temperature-Composition PDF Formulation in Modeling of Flame Dynamics in Diesel Engine Combustion

İ. Bedii ÖzdemirORCID iD: http://orcid.org/0000-0002-4126-2029 / Cengizhan Cengiz
Published Online: 2018-06-13 | DOI: https://doi.org/10.1515/ijnsns-2018-0023

Abstract

In the present work, the modified temperature-composition (MT-C) PDF formulation was embedded in the KIVA to study the characteristics of flame development and emissions in a diesel engine. The model uses a time scale defined by an energy balance on the flame surface and a new normalization scheme exploiting the maximum attainable mass fractions of progress variables. Development of the latter in the Tξ parameter space regulates the flame progress in the physical space and, thus, the approach presents some potential to capture the local flame extinction. The interactions of the swirl and spray penetration and their influence in the mixing process, combustion and emissions are also evaluated. Analyses of the temporal evolution of mixture fraction and temperature show that the swirl motion forms a homogeneous mixture on the lee sides of the spray jets where the ignition actually starts. Since the local time scales are considered in the model, the chemistry-controlled premixed combustion developing there is well predicted.

Keywords: flame dynamics; diesel combustion; presumed pdf; nonpremixed turbulent combustion modeling; ILDM

PACS: 2010; 47.70.Pq; 47.70.Fw; 47.11.Df; 47.27.E-; 47.27.T-

References

  • [1]

    Commission Regulation (EC) No 715/2007Google Scholar

  • [2]

    Commission Regulation (EU) No 582/2011Google Scholar

  • [3]

    T. V. Johnson. Review of diesel emissions and control. SAE Int J Fuels Lubr. 2010;3:16–29.CrossrefGoogle Scholar

  • [4]

    R.D. Reitz and G. Duraisamy. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energ Combust. 2015;46:12–71.CrossrefGoogle Scholar

  • [5]

    A.G. Konstandopoulos, M. Kostoglou, C. Beatrice, G. Di Blasio, A. Imren and I. Denbratt. Impact of combination of EGR, SCR, and DPF technologies for the low-emission rail diesel engines. Emission Control Sci. Technol. 2015;1:213–225.CrossrefGoogle Scholar

  • [6]

    P. Belardini, C. Bertoli, S. Corsaro and P. D'Ambra. The impact of different stiff ODE solvers in parallel simulation of diesel combustion. In: Proc. HPCC'05, in: Lecture Notes in Computer Science. 3726. Berlin: Springer, 2005: 958–968Google Scholar

  • [7]

    M. Frenklach and H. Wang. Detailed mechanism and modeling of soot particle formation. In: H. Bockhorn, editor. Soot formation in combustion: Mechanisms and models. Berlin: Springer-Verlag, 1991:162–190.Google Scholar

  • [8]

    F. Mauss, T. Schafer and H. Bockhorn. Inception and growth of soot particles in dependence on the surrounding gas phase. Combust. Flame. 1994;99:697–705.CrossrefGoogle Scholar

  • [9]

    P. Adomeit, O. Lang, S. Pischinger, R. Aymanns, M. Graf and G. Stapf, Analysis of cyclic fluctuations of charge motion and mixture formation in a DISI engine in stratified operation, SAE Tech. Pap. 2007-01-1412 (2007)Google Scholar

  • [10]

    K.S. Oppenauer and D. Alberer. Soot formation and oxidation mechanisms during diesel combustion: Analysis and modeling impacts. Int. J. Engine Res. 2014;15:954–964.CrossrefGoogle Scholar

  • [11]

    R. Rezaei, S. Pischinger, J. Ewald and P. Adomeit, A new CFD approach for assessment of swirl flow pattern in HSDI Diesel engines. SAE Tech. Pap. 2010-32-0037 (2010)Google Scholar

  • [12]

    Y. Cao, L. Thomas, J. Borée and S. Guilain, Estimation of cycle-to-cycle variations for in-cylinder tumbling flows, 16th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 09–12 July, 2012Google Scholar

  • [13]

    M.S. Toledo, L.L. Penven, M. Buffata, A. Cadiou and J. Padillaa. Large eddy simulation of the generation and breakdown of a tumbling flow. Int. J. Heat Fluid Fl. 2007;28:113–126.CrossrefGoogle Scholar

  • [14]

    M. Fogleman, J. Lumley, D. Rempfer and D. Haworth. Application of the proper orthogonal decomposition to datasets of internal combustion engine flows. J. Turbulence. 2004;5:1–18.Google Scholar

  • [15]

    R.N. Dahms and J.C. Oefelein. Liquid jet breakup regimes at supercritical pressures. Combust. Flame. 2015;162:3648–3657.CrossrefGoogle Scholar

  • [16]

    Engine Combustion Network (ECN), https://ecn.sandia.gov/, 2016

  • [17]

    J. Manin, M. Bardi, L.M. Pickett, R.N. Dahms and J.C. Oefelein. Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel. 2014;134:531–543.CrossrefGoogle Scholar

  • [18]

    Y. Jung, J. Manin, S.A. Skeen and L.M. Pickett, Measurement of liquid and vapor penetration of diesel sprays with a variation in spreading angle, SAE Tech. Pap. 2015-01-0946 (2015)Google Scholar

  • [19]

    W.E. Eagle, M.P.B. Musculus, L.-M.C. Malbec and G. Bruneaux. Measuring transient entrainment rates of a confined vaporizing diesel jet. ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems. Portland, Oregon, May 2014Google Scholar

  • [20]

    S.A. Skeen, J. Manin and L.M. Pickett. Simultaneous formaldehyde PLIF and high-speed Schlieren imaging for ignition visualization in high-pressure spray flames. Proc. Combust. Inst. 2015;35:3167–3174.CrossrefGoogle Scholar

  • [21]

    P.K. Senecal, E. Pomraning, J.W. Anders, M.R. Weber, C.R. Gehrke, C.J. Polonowski and C. Mueller. Predictions of transient flame lift-off length with comparison to single-cylinder optical engine experiments. J. Eng. Gas Turb. Power. 2014;136:111505–1–19.CrossrefGoogle Scholar

  • [22]

    H. Yu, Y. Guo, D. Li, X. Liang, G.-Q. Shu, Y. Wang, X. Wang and L. Dong, Numerical investigation of the effect of spray cone angle on mixture formation and CO/soot emissions in an early injection HCCI Diesel engine, SAE Tech. Pap. 2015-01-1070 (2015)Google Scholar

  • [23]

    D. Goryntsev, A. Sadiki and J. Janicka, Cycle-to-cycle variations based unsteady effects on spray combustion in internal combustion engines by using LES, SAE Tech. Pap. 2012-01-0399 (2012)Google Scholar

  • [24]

    L.M. Pickett and J.J. Lopez, Jet-wall interaction effects on Diesel combustion and soot formation, SAE Tech. Pap. 2005-01-0921 (2005)Google Scholar

  • [25]

    H. Pitsch, H. Barths and N. Peters, Three-dimensional modeling of NOx and soot formation in DI-Diesel engines using detailed chemistry based on the interactive flamelet approach, SAE Tech. Pap. 962057 (1996)Google Scholar

  • [26]

    C. Felsch, M. Gauding, C. Hasse, S. Vogel and N. Peters. An extended flamelet model for multiple injections in DI Diesel engines. Proc. Combust. Inst. 2009;32:2775–2783.CrossrefGoogle Scholar

  • [27]

    S. Singh, R.D. Reitz and M.P.B. Musculus, Comparison of the characteristic time (CTC), representative interactive flamelet (RIF), and direct integration with detailed chemistry combustion models against optical diagnostic data for multi-mode combustion in a heavy-duty DI Diesel engine, SAE Tech. Pap. 2006-01-0055 (2006)Google Scholar

  • [28]

    M.P. Halstead, L.J. Kirsch and C.P. Quinn. The autoignition of hydrocarbon fuels at high temperatures and pressures-fitting of a mathematical model. Combust. Flame. 1977;30:45–60.CrossrefGoogle Scholar

  • [29]

    T. Yoshikawa and R.D. Reitz. Development of an improved NOx reaction mechanism for low temperature Diesel combustion modeling. SAE Int. J. Engines. 2008;1:1105–1117.CrossrefGoogle Scholar

  • [30]

    H.-W. Ge, R.D. Reitz and W. Willems. Modeling the effects of in-cylinder flows on HSDI diesel engine performance and emissions. SAE Int. J. Fuels Lubr. 2008;1:293–311.CrossrefGoogle Scholar

  • [31]

    O. Colin, A. Benkenida and C. Angelberger. A 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines. Oil Gas Sci. Technol. 2003;58:47–62.CrossrefGoogle Scholar

  • [32]

    O. Colin and A. Benkenida. The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion. Oil Gas Sci. Technol. 2004;59:593–609.CrossrefGoogle Scholar

  • [33]

    E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein and J.H. Chen. A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame. 2012;159:2690–2703.CrossrefGoogle Scholar

  • [34]

    P. Zeng, S. Sarholz, C. Iwainsky, B. Binninger, N. Peters and M. Herrmann. Simulation of primary breakup for Diesel spray with phase transition. In: Ropo M. et al., editor. Recent advances in parallel virtual machine and message passing interface. Heidelberg: Springer, 2009:313–320.Google Scholar

  • [35]

    I.B. Celik, I. Yavuz and A. Smirnov. Large eddy simulations of in-cylinder turbulence for internal combustion engines: A review. Int. J. Engine Res. 2001;2:119–148.CrossrefGoogle Scholar

  • [36]

    S. Som, P.K. Senecal and E. Pomraning. Comparison of RANS and LES turbulence models against constant volume Diesel experiments. ILASS Americas 24th Annual Conference on Liquid Atomization and Spray Systems. San Antonio, Texas, May 2012.Google Scholar

  • [37]

    W.P. Jones and J.H. Whitelaw. Calculation methods for reacting turbulent flows; A review. Combust. Flame. 1982;48:1–26.CrossrefGoogle Scholar

  • [38]

    R. Borghi. Turbulent combustion modelling. Prog. Energy Combust. Sci. 1988;14:245–292.CrossrefGoogle Scholar

  • [39]

    C. Huang and A.N. Lipatnikov. Comparison of presumed PDF models of turbulent flames. J. Combust. 2012;2012:1–15.CrossrefGoogle Scholar

  • [40]

    H.-W. Ge and E. Gutheil. Probability density function (pdf) simulation of turbulent spray flows. Atomiz. Spray. 2006;16:531–542.CrossrefGoogle Scholar

  • [41]

    H.-W. Ge and E. Gutheil. Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame. 2008;153:173–185.CrossrefGoogle Scholar

  • [42]

    H.-W. Ge, Y. Hu and E. Gutheil. Joint gas-phase velocity-scalar PDF modeling for turbulent evaporating spray flows. Combust. Sci. Technol. 2012;184:1664–1679.CrossrefGoogle Scholar

  • [43]

    R.M. Humza, Y. Hu and E. Gutheil. Probability density function modeling of turbulent spray combustion. In: Merci B. and Gutheil E., (Editors). Experiments and numerical simulations of diluted spray turbulent combustion. Heidelberg, Germany: Springer, 2014.Google Scholar

  • [44]

    P. Honhar, Y. Hu and E. Gutheil. Analysis of mixing models for use in transported joint PDF simulations of turbulent spray combustion. Presented at the 27th Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe). Brighton, UK, September 4–7 (2016)Google Scholar

  • [45]

    Y. Hu and E. Gutheil. Numerical simulations of turbulent poly-disperse acetone spray flows using a transported joint probability density function method. Atomiz. Sprays. 2016;26:275–299.CrossrefGoogle Scholar

  • [46]

    K.G. Harstad and J. Bellan. Mixing rules for multicomponent mixture mass diffusion coefficients and thermal diffusion factors. J. Chem. Phys. 2004;120:5664–5673.CrossrefGoogle Scholar

  • [47]

    E.S. Taskinoglu and J. Bellan. Posteriori study using a DNS database describing fluid disintegration and binary-species mixing under supercritical pressure: Heptane and nitrogen. J. Fluid Mech. 2010;645:211–254.CrossrefGoogle Scholar

  • [48]

    J. Bellan. Evaluation of mixture-fraction-based turbulent-reaction-rate model assumptions for high-pressure reactive flows. Combustion and Flame. 2017;179:253–266.CrossrefGoogle Scholar

  • [49]

    G. Castiglioni and J. Bellan. On models for predicting thermodynamic regimes in high-pressure turbulent mixing and combustion of multispecies mixtures. J. Fluid Mech. 2018;843:536–574.CrossrefGoogle Scholar

  • [50]

    S.B. Pope. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 1986;11:119–192.Google Scholar

  • [51]

    D.C. Haworth. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 2010;36:168–259.CrossrefGoogle Scholar

  • [52]

    Y. Hu, H. Olguin and E. Gutheil. Transported joint probability density function simulation of turbulent spray flames combined with a spray flamelet model using a transported scalar dissipation rate. Combust. Sci. Tech. 2017;189:322–339.CrossrefGoogle Scholar

  • [53]

    I.B. Ozdemir. A modified temperature-composition pdf method and its application to the simulation of a transitional bluff-body flame. Comput. Math. Appl. 2018;75:2574–2592.CrossrefGoogle Scholar

  • [54]

    J. Warnatz. Hydrocarbon ignition: Automatic generation of reaction mechanisms and applications to modeling of engine knock. Proc. Combust. Inst. 1984;20:845–856.Google Scholar

  • [55]

    H.J. Curran, P. Gaffuri, W.J. Pitz and C.K. Westbrook. A comprehensive modeling study of n-heptane oxidation. Combust. Flame. 1998;114:149–177.CrossrefGoogle Scholar

  • [56]

    J. Warnatz, U. Maas and R.W. Dibble. Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. Heidelberg: Springer, 2001.Google Scholar

  • [57]

    C.K. Westbrook, W. Pitz and J. Warnatz. A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range and its application to analysis of engine knock. Proc. Combust. Inst. 1988;22:893–901.Google Scholar

  • [58]

    D.A. Goussis and S.H. Lam. Understanding complex chemical kinetics with computational singular perturbation. Proc. Combust. Inst. 1992;24:113–120.Google Scholar

  • [59]

    U. Maas and S.B. Pope. Simplifying chemical kinetics: Intrinsic low dimensional manifolds in composition space. Combust. Flame. 1992;88:239–264.CrossrefGoogle Scholar

  • [60]

    B.A. Sen, İ.B. Özdemir and J. Warnatz. Implementation of the hierarchical structure of the combustion processes into intrinsic low-dimensional manifolds technique. The International Symposium on Turbulence, Heat and Mass Transfer (THMT-03). Antalya, 2003.Google Scholar

  • [61]

    C. Chevalier, P. Louessard, U.C. Müller and J. Warnatz. A detailed low-temperature reaction mechanism of n-Heptane auto-ignition. Int. Symp. on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA) 90, 93–97. Nagoya, Japan, July 1–4 1990.Google Scholar

  • [62]

    C. Chevalier, W. Pitz, J. Warnatz and H. Melenk. Hydrocarbon ignition: Automatic generation of reaction mechanisms and applications to modeling of engine knock. Proc. Combust. Inst. 1992;24:93–101.CrossrefGoogle Scholar

  • [63]

    Z. Ren and S.B. Pope. The use of slow manifolds in reactive flows. Combust. Flame. 2006;147:243–261.CrossrefGoogle Scholar

  • [64]

    J.A. Van Oijen and L.P.H. De Goey. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci Tech. 2000;161:113–137.CrossrefGoogle Scholar

  • [65]

    H. Pitsch and N. Peters. A consistent flamelet formulation for nonpremixed combustion considering differential diffusion effects. Combust. Flame. 1998;114:26–40.CrossrefGoogle Scholar

  • [66]

    R. Venugopal and J. Abraham, A review of fundamental studies relevant to flame lift-off in diesel jets, SAE Tech. Pap. 2007-01-0134 (2007)Google Scholar

  • [67]

    U. Azimov, K.S. Kim and C. Bae. Modeling of flame liftoff length in Diesel low-temperature combustion with multidimensional CFD based on the flame surface density and extinction concepts. Combust. Theory Model. 2010;14:155–175.CrossrefGoogle Scholar

  • [68]

    J. Warnatz. HOMREA user guide: Simulation Reaktiver Strömungen. Steinbeis-Transferzentrum, Heidelberg. 2002.Google Scholar

  • [69]

    L.-M. Malbec, W.E. Eagle, M.P.B. Musculus and P. Schihl, Influence of injection duration and ambient temperature on the ignition delay in a 2.34 L optical diesel engine, SAE Tech. Pap. 2015-01-1830 (2015)Google Scholar

  • [70]

    J. Weber, Optimization Methods for the Mixture Formation and Combustion Process in Diesel Engines, PhD thesis, RWTH Aachen, 2008, p.37Google Scholar

  • [71]

    A. Dulbecco, F.-A. Lafossas, G. Mauviot and T.J. Poinsot. A New 0D Diesel HCCI combustion model derived from a 3D CFD approach with detailed tabulated chemistry. Oil Gas Sci.Technol. 2009;64:259–284.CrossrefGoogle Scholar

  • [72]

    A.P. Da Cruz, T.A. Baritaud and T.J. Poinsot. Self-Ignition and combustion modeling of initially nonpremixed turbulent systems. Combust. Flame. 2001;124:65–81.CrossrefGoogle Scholar

  • [73]

    I. Dhuchakallaya and A.P. Watkins. Application of spray combustion simulation in DI diesel engine. Appl. Energ. 2010;87:1427–1432.CrossrefGoogle Scholar

  • [74]

    S. Lukaszyk. A new concept of probability metric and its applications in approximation of scattered data sets. Comput. Mech. 2004;33:299–304.CrossrefGoogle Scholar

  • [75]

    R. Novella, A. Garcia, J.M. Pastor and V. Domenech. The role of detailed chemical kinetics on CFD Diesel spray ignition and combustion modelling. Math. Comput. Model. 2010;54:1706–1719.Google Scholar

  • [76]

    M.P. Halstead, L.J. Kirsch and C.P. Quinn. The autoignition of hydrocarbon fuels at high temperatures and pressures - Fitting of a mathematical model. Combust. Flame. 1977;30:45–60.CrossrefGoogle Scholar

  • [77]

    A. Patel, S.-C. Kong and R.D. Reitz, Development and validation of a reduced reaction mechanism for HCCI engine simulations, SAE Tech. Pap. 2004-01-0558, (2004)Google Scholar

  • [78]

    R. Bounaceur, P.A. Glaude, R. Fournet, F. Battin-Leclerc, S. Jay and A. Pires Da Cruz. Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines. Int. J. Vehicle Des. 2007;44:124–142.CrossrefGoogle Scholar

  • [79]

    J.E. Nesbitt, S.E. Johnson, L.M. Pickett, D.L. Siebers, S.-Y. Lee and J.D. Naber. Minor species production from lean premixed combustion and their impact on autoignition of Diesel surrogates. Energ Fuel. 2011;25:926–936.CrossrefGoogle Scholar

  • [80]

    L. Hakim, G. Lacaze and J. Oefelein, Large eddy simulation of autoignition transients in a model Diesel injector configuration, SAE Tech. Pap. 2016-01-0872 (2016)Google Scholar

  • [81]

    B. Varatharajan and F.A. Williams. Ignition times in the theory of branched-chain thermal explosions. Combust. Flame. 2000;121:551–554.CrossrefGoogle Scholar

  • [82]

    J.A. Miller and C.T. Bowman. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 1989;15:287–338.CrossrefGoogle Scholar

  • [83]

    H. Bockhorn. Soot formation in combustion, mechanisms and models. Berlin: Springer-Verlag, 1994.Google Scholar

  • [84]

    D. Kittelson and M. Kraft, Particle formation and models in internal combustion engines, Centre for Computational Chemical Engineering, University of Cambridge, Preprint 142 (2014)Google Scholar

  • [85]

    I.M. Kennedy. Models of soot formation and oxidation. Prog. Energy Combust. Sci. 1997;23:95–132.CrossrefGoogle Scholar

  • [86]

    J. Appel, H. Bockhorn and M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics; laminar premixed flames of C2 hydrocarbons. Combust Flame. 2000;121:122–136.CrossrefGoogle Scholar

  • [87]

    B.S. Haynes and H.G. Wagner. Soot formation. Prog. Energy Combust. Sci. 1981;7:229–273.CrossrefGoogle Scholar

  • [88]

    A.A. Amsden, P.J. O'Rourke and T.D. Butler, KIVA-II - A computer program for chemically reactive flows with sprays,” Los Alamos National Labs., LA-11560-MS, 1989Google Scholar

  • [89]

    Z. Han and R.D. Reitz. Turbulence modeling of internal combustion engines using RNG k-e models. Combust. Sci. Tech. 1995;106:267–295.CrossrefGoogle Scholar

  • [90]

    V. Yakhot and S.A. Orzag. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput. 1986;1:3–51.CrossrefGoogle Scholar

  • [91]

    P. Taskinen. Modelling of spray turbulence with the modified RNG k-epsilon model. International Multidimensional Engine Modeling User's Group Meeting. Detroit, MI, USA, 7 March 2002.Google Scholar

  • [92]

    C. Correa, Combustion simulations in Diesel engines using reduced reaction mechanisms, PhD thesis, University of Heidelberg, Germany, 30 June 2000Google Scholar

  • [93]

    R. Steiner, C. Bauer, C. Krüger, F. Otto and U. Maas, 3D-simulation of DI-Diesel combustion applying a progress variable approach accounting for complex chemistry, SAE Tech. Pap. 2004-01-0106 (2004)Google Scholar

  • [94]

    A.A. Amsden, KIVA-3: A KIVA program with block-structured mesh for complex geometries, Los Alamos National Labs., LA-12503-MS, 1993Google Scholar

  • [95]

    F.V. Bracco. Modeling of engine sprays. International Congress and Exposition, Detroit, Michigan, February 25 – March 1, 1985.Google Scholar

  • [96]

    R.D. Reitz. Modeling atomization processes in high-pressure vaporizing sprays. Atomization Spray. 1987;3:309–337.Google Scholar

  • [97]

    P.J. O'Rourke and A.A. Amsden. The TAB method for numerical calculation of spray droplet breakup. International Fuels and Lubricants Meeting and Exposition Toronto, Ontario November 2-5 1987.Google Scholar

  • [98]

    B. Enaux, V. Granet, O. Vermorel, C. Lacour, L. Thobois, V. Dugue and T. Poinsot. Large eddy simulation of a motored single-cylinder piston engine: Numerical strategies and validation, Flow, Turbul. Combust. 2011;86:153–177.Google Scholar

  • [99]

    Y.J. Kim, S.H. Lee and N.H. Cho, Effect of air motion on fuel spray characteristics in a gasoline direct injection engine. SAE Tech. Pap. 1999-01-0177 (1999)Google Scholar

  • [100]

    R.D. Reitz and F.V. Bracco. Mechanism of atomization of liquid jets. Phys. Fluids. 1982;25:1730–1742.CrossrefGoogle Scholar

  • [101]

    R.D. Reitz, L. Pickett and M. Trujillo. Advanced DNS modeling of liquid atomization, encyclopedia of automotive engineering. New York: John Wiley, 2014:1090–1115.Google Scholar

  • [102]

    R. Seiser, H. Pitsch, K. Seshadri, W.J. Pitz and H.J. Curran. Extinction and autoignition of N-heptane in counterflow configuration. Proc. Combust. Inst. 2000;28:2029–2037.CrossrefGoogle Scholar

About the article

Received: 2018-01-23

Accepted: 2018-05-21

Published Online: 2018-06-13

Published in Print: 2018-09-25


This work has been supported by TUBITAK (MAG 106M228). Partial support by Ford OTOSAN Inc. is greatly acknowledged.


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 6, Pages 643–667, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2018-0023.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in